
Adaptive Search

A Library to Solve CSPs
Edition 1.1, for Adaptive Search version 1.0.0

March 11, 2010

by Daniel Diaz, Philippe Codognet and Salvador Abreu



Copyright (C) 2002-2010 Daniel Diaz, Philippe Codognet and Salvador Abreu
Permission is granted to make and distribute verbatim copies of this manual

provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111, USA.



3 THE ADAPTIVE SEARCH API

1 Introduction

The Adaptive Search library provides a set of functions to solve CSPs by a local
search method. For more information consult [1] The current release only works
for problems that can be stated as permutation problems. More precisely, all
n variables have a same domain x1 .. xn and are subject to an implicit all-
different constraint. Several problems fall into this category and some examples
are provided with the library.

2 Installation

Please refer to the file called INSTALL located in the src subdirectory.

3 The Adaptive Search API

3.1 Overall usage

The typical use of the API is as follows:

• Initialize a structure with the input data needed by the solver. This
includes problem data (e.g. size, domain,...) together with parameters
to tune the solver (e.g. tebu tenure,...).

• Define a set of functions needed by the solver (e.g. to compute the cost
of a configuration). Some functions are optional meaning that the solver
performs an implicit treatment in the absence of such a function. Most of
the times, providing an optional function speeds up the execution.

• Call the solver.

• Exploit the data provided by the solver (the solution, various counters
giving information about the resolutions).

To use the API a C file should include the header file ad solver.h:

#include "ad_solver.h"

Obviously the C compiler must be invoked with the adequate option to
ensure the header file can be found by the preprocessor.

At link time, the library called libad solver.a must be passed. Here also,
some options might have to be passed to the C compiler to allow the linker to
locate the library.

If both the include file and the library are in the same directory as the user
C file (for instance problem.c), then the following Unix command line (using
gcc) suffices:

gcc -o problem problem.c libad_solver.a

1



3.2 Input parameters 3 THE ADAPTIVE SEARCH API

If the include file is in /usr/adaptive/include and the library in /usr/adaptive/lib,
a possible invocation could be:

gcc -I/usr/adaptive/include -L/usr/adaptive/lib -o problem problem.c -lad_solver

A structure (C type AdData) is used to communicate with the solver. Fields
in this structure can be decomposed in: input or output data (or input-output).
Input parameters are given to the solver and should be initialized before calling
the solver. Output parameters are provided by the solver.

Please look at the header file for more information about the fields in the
AdData type. We here detail the most important parameters.

3.2 Input parameters

The following input variables control the basic data and have to be initialized
before calling the resolution function.

• int size: size of the problem (number of variables).

• int *sol: the array of variables. It is an output parameter but it can
also be used to pass the initial configuration if int do not init is set.

• int do not init: if set to true (a value != 0) the initial configuration
used is the one present in sol (else a random configuration is computed).

• int base value: base offset for the domain of each variable (each vaiable
can then take a value in base value .. base value + size− 1.

• int *actual value: if not NULL it contains the array of values (domain)
variables can take. If base value is given, it is added to each value of
actual value to form the domain.

• int break nl: when the solver displays a solution a new line is inserted
every break nl values (0 if no break is wanted). This makes it possible
to display matrix in a more readable form.

• int debug: debug level (0: none, 1: trace, 2: interactive). This requires
the library is compiled with debugging support (see INSTALL).

• char *log file: name of the log file (or NULL if none). This requires the
library is compiled with log file support (see INSTALL).

The following input parameters make it possible to tune the solver and
should be initialized before calling the resolution function.

• int exhaustive: if true the solver always evaluate (the cost of) all pos-
sible swaps to chose the best swap. If false a projection of the error on
each variable is used to first select the “worst” variable ([1] for more in-
formation).

2



3.3 Output parameters 3 THE ADAPTIVE SEARCH API

• int first best: when looking for the next configuration, the solver stops
as soon as a better move is found (instead of continuing to find the best
move).

• int prob select loc min: this is a percentage to force a local minimum
(i.e. when the 2 selected variables to swap are the same) instead of staying
on a plateau (a swap involves 2 different variables but the overall cost will
remain the same). If a value > 100 is given, this option is not used.

• int freeze loc min: number of swaps a variable is frozen when a local
minimum is encountered (i.e. the 2 variables to swap are the same).

• int freeze swap: number of swaps the 2 variables that have been selected
(and thus swapped) to improve the solution are frozen.

• int reset limit: number of frozen varables before a reset is triggered.

• int nb var to reset: number of variables to randomly reset.

• int restart limit: maximum number of iterations before restarting
from scratch (give a big number to avoid a restart).

• int restart max: maximal number of restarts to perform before giving
up. To avoid a too long computation the parameters int restart limit
and int restart max can be defined.

• int reinit after if swap: see the defintion of the user function Cost If Swap()
for more information.

3.3 Output parameters

In addition to the array containing the solution, the solver maintains coun-
ters that can be consulted by the user to obtain some information about the
resolution.

• int *sol: the current configuration. When the solver teminates, it nor-
mally contains a solution. If the solver has finished because it reached
the maximum number of iterations and restarts, the sol array contains a
pseudo-solution (an aprroximation of the solution).

• int total cost: cost of the current configuration (0 means a solution).

• int nb restart: number of restart performed.

• int nb iter, int nb iter tot: number of iterations performed in the
current pass and across restarts.

• int nb swap, int nb swap tot: number of swaps performed.

• int nb same var, int nb same var tot: number of variables with (the
same) highest cost.

3



3.4 Miscellaneous parameters 3 THE ADAPTIVE SEARCH API

• int nb reset, textttint nb reset tot: number of reset swaps performed.

• int nb local min, int nb local min tot: number of local minimum en-
countered.

3.4 Miscellaneous parameters

The following variables are not used by the solver. They simply convey values
for the user. It is particularly useful for multithreading. It also contains some
information related to the default main() function.

• int param: the parameter handled by the default main() function.

• int seed: the seed set by a command-line option of the default main()
function (or -1 if any).

• int reset percent: -1 or the % of variables to reset defined by a command-
line option of the default main() function. If it is -1, the Init Parameters()
function should either set it to a percentage or directly set the nb var reset
parameter.

• int data32[4]: some values to store 32-bits user information.

• int data64[42: some values to store 64-bits user information.

3.5 Functions

Here is the set of functions provided by the library:

• int Ad Solve(AdData *p ad): this function invokes the Adaptive solver
to find a solution to the problem. This function calls in turn user func-
tions (e.g. to compute the cost of a solution or to project this cost on a
given variable). This function returns the total cost at then end of the
resolution (i.e. 0 if a solution has been found).

• void Ad Display(int *t, AdData *p ad, unsigned *mark): this func-
tion displays an array t (generally sol) and also displays a ’X’ for marked
variables (if mark != NULL). This function is generally only used by the
solver.

3.6 User functions

The function Ad Solve() calls some user functions to guide its resolution. Some
functions are MANDATORY while others are OPTIONAL. Here is the set of
user functions:

• int Cost Of Solution(int should be recorded): [MANDATORY] this
function returns the cost of the current solution (the user code should keep
a pointer to sol it needed). The argument should be recorded is passed

4



4 OTHER UTILITY FUNCTIONS

by the solver, if true the solver will continue with this cost (so maybe the
user code needs to register some information), if false the solver simply
wants to know the cost of a possible move (but without electing it).

• int Cost On Variable(int i): [OPTIONAL] this function returns the
projection of the current cost on the ith variable (from 0 to size-1). If
not present then the resolution must be exhausitive (see exhausitive).

• int Cost If Swap(int current cost, int i, int j): [OPTIONAL] this
function evaluates the cost of a swap (the swap is not performed and
should not be performed by the function). Passed arguments are the cost
of the solution, the indexes i andj of the 2 candidates for a swap.. If this
function is not present a default function is used which:

– performs the swap,

– calls Cost Of Solution(),

– undoes the swap,

– if the variable int reinit after if swap is true then Cost Of Solution()
is also called another time. This is useful if Cost Of Solution() up-
dates some global information to ensure this information is reset.

• void Executed Swap(int i, int j): [OPTIONAL] this function is called
to inform the user code a swap has been done. This is useful if the user
code maintains some global information.

• int Next I(int i): [OPTIONAL] this function is called in case of an
exhaustive search (see exhaustive). It is used to enumerate the first
variable. This functions receives the current i (initially it is -1) and returns
the next value (or something > size at the end). In case this function is
not defined, i takes the values 0 .. size− 1.

• int Next J(int i, int j): [OPTIONAL] this function is called in case
of an exhaustive search (see exhaustive). It is used to enumerate the
second variable. This functions receives the current i and the current j
(for each new i it is -1) and returns the next value for j (or something >
size at the end). In case this function is not defined, j takes the values
i + 1 .. size− 1 for each new i.

• void Display Solution(AdData *p ad): [OPTIONAL] this function is
called to display a solution (stored inside sol). This allows the user to
customize the output (useful if modelisation of the problem needs a de-
coding to be understood). The default version simply displays the values
in sol.

4 Other utility functions

To use this functions the user C code should include the file tools.h.

5



5 USING THE DEFAULT MAIN() FUNCTION

• long Real Time(void): returns the real elapsed time since the start of
the process (wall time).

• long User Time(void): returns the user time since the start of the pro-
cess.

• unsigned Randomize Seed(unsigned seed): intializes the random gen-
erator with a given seed.

• unsigned Randomize(void): randomly initilizes the random generator.

• unsigned Random(unsigned n): returns a random integer >= 0 and < n.

• void Random Permut(int *vec, int size, const int *actual value,
int base value): initializes the size elements of the vector vec with
a random permutation. If actual value is NULL, values are taken in
base value .. size− 1 + base value. If actual value is given, values are
take from this array (each element of the array is added to base value to
form an element of the permutation).

• int Random Permut Check(int *vec, int size, const int *actual value,
int base value): checks if the values of vec forms a valid permutation
(returns true or false).

• void Random Permut (int *vec, int size, const int *actual value,
int base value): repairs the permutation stored in vec so that it now
contains a valid permutation (trying to keep untouched as much as possi-
ble good values).

5 Using the default main() function

The user is obviously free to write his own main() function. In order to have
a same command-line options for all bechmarks a default main() is included in
the library (it is then used if no user main() is found at link-time). The default
function act as follows:

• it parses the command-line to retrieve tuning options, the running mode
(number of executions,...), and the parameter if it is expected (e.g. the
chessboard size in the queens). NB: if a parameter is expected the vari-
able param needed must be declared and initialized to 1 in the user code.
Each tuning option can be set via a command-line option and the corre-
sponding variable (see input variables) is set. The only exception is for for
nb var reset which can be specified indirectly as a percentage (instead
of an absolute value) inside the variable reset percent.

• it invokes a user function void Init Parameters(AdData *p ad) which
must initialises all input variables (e.g. size, allocate sol,...). This func-
tion should only initialises tuning variable that are not set via command-
line options. In this case the value of the corresponding variable is -1.

6



REFERENCES REFERENCES

• it invokes the user defined void Solve(AdData *p ad) function (which
in turn should invoke the Adaptive solver Ad Solve().

• it displays the result or a summary of the counters (in benchmark mode).

In addition to the variables described above, the following parameters are
available when using the default main():

• int param: the parameter (if param needed is true).

• int reset percent: -1 or the % of variables to reset defined by a command-
line option. If it is -1, the Initializations() function should either set
it to a percentage or directly set nb var reset.

• int seed: -1 or the seed defined by a command-line option. The main()
function initialises the random number generator in both cases so the
Initializations() does not need to do it.

The default default main() function needs an additional function to check
the validity of a solution. The user must then provide a function int Check Solution(AdData
*p ad) which returns 1 if the solution passed in p ad is valid. A Simple defini-
tion for this function could be to simply test if the cost of the solution is 0 (not
very precise as verification).

Please look at the examples for more details.

References

[1] P. Codognet and D. Diaz. Yet Another Local Search Method for Constraint
Solving. In Proc. SAGA01, 1st International Symposim on Stochastic Al-
gorithms : Foundations and Applications, LNCS 2246, Springer Verlag
2001

7


