wamcc: Compiling Prolog to C

Philippe Codognet and Daniel Diaz
INRIA-Rocquencourt

Domaine de Voluceau

78153 Le Chesnay

FRANCE
{Philippe.Codognet, Daniel.Diaz}@inria.fr

Abstract

We present the wamcc system, a Prolog compiler that translates Prolog to C via
the WAM. This approach has some interesting consequences: simplicity, efficiency,
portability, extensibility and modularity. Indeed the system does not incorporate
complex optimizations but is as efficient as Quintus Prolog 2.5 (based on an emulator
written in assembly language) and only 30 % slower than Sicstus Prolog (compiling
to native code). It is instantly portable to any machine with a C compiler and easily
expandable with various extensions, such as constraints, as shown by the c1p(FD)
system which is based on wamcc. It also incorporates a simple but efficient handling
of modularity thanks to the use of C modularity.

1 Introduction

Compiling Prolog is now a well-known task and no more as challenging as ten years
ago, when the design of high-speed Prolog systems was not completely assessed. One
of the major breakthroughs of the last decade in Logic Programming has arguably
been the definition of the Warren Abstract Machine (WAM) [I4] which became a
de facto standard for the compilation of Prolog and has helped many researchers
to gain a better understanding of Prolog’s execution and to develop efficient LP
systems. Moreover the WAM proved to be flexible enough to remain the backbone
of various extensions such as Higher-Order, constraints, parallel or concurrent LP.
However the design of simple and yet efficient Prolog systems is still an active topic.

We started to develop our own logical engine in 1991, in order to provide a sound
basis for various extensions and in particular Constraint Logic Programming [6].
The requirements for this new system were as follows:

extensibility: the system should be used as an experimental platform. This im-
plies simplicity in the design of the Prolog engine without complex optimiza-
tions that would excessively enlarge the size of the system.

portability: in order to achieve a wide diffusion and avoid the obsoleteness inher-
ent to the fondness for a particular architecture.

efficiency: to avoid handicapping future extensions because of insufficient perfor-
mances of the underlying Prolog Systems. A new language is indeed often first
judged on the (counter) performances it has on classical benchmarks and only
second on the novelty and expressiveness it offers. Therefore the objective
for our logical engine was to be as efficient as the emulated version of Sicstus
Prolog, which is based on a highly optimized C emulator.

modularity: to decompose a Prolog application into several modules. This also
make it possible in a first step to forget about built-in predicates, that will be
written in Prolog later in separate modules.

Classical techniques consist in compiling Prolog to a WAM-like instruction set
and then either executing directly the WAM code with an emulator written in C
(original version of Sicstus Prolog) or assembler (Quintus Prolog) or compiling to
native code (Prolog by BIM, latest version of Sicstus Prolog, Aquarius Prolog).

Nevertheless, neither emulation nor compilation to native code satisfy our initial
requirements: emulation has poor performances if unoptimized or great complexity
if optimized while the production of native code is certainly not a simple task and
is not portable. We thus decided to investigate a new alternative: the translation of
Prolog to C. Indeed, this solution merges, in theory at least, the advantages of both
approaches. Portability is ensured by the worldwide hegemony of the C language
and native code will be produced at the end of the compilation process (by the C
compiler). This avoids the overhead of emulatros and therefore should compensate
from the lack of optimizations. The modularity of the C language makes it possible
to compile Prolog modules as separate C modules that can be linked together by
the linker (predicate visibility being coped through appropriate C declarations).
Compiling to C also makes it possible for a simple interface with this (and any
other compiled) language and produces real executable files as outputs of the logical
system. The resulting system, named wamcc, proves that this approach is sound and
that a system translating Prolog to C can be as efficient as an optimized commercial
Prolog.

The paper is organized as follows. Section 2 presents basic ideas about the
execution of WAM code. Section 3 describes how other existing systems compile
WAM code to C while section 4 presents the wamcc approach. Section 5 details
how the memory is managed in wamcc and, finally, section 6 presents performance
evaluations. A short conclusion ends the paper.

2 Below the WAM

For a few decades compilers for imperative, functional or logical languages decom-
pose the compilation process in several steps and in particular use an abstract
machine as an intermediate level between the high-level source code and the target
low-level executable code. Indeed, since Pascal and the P-code, abstract machines
have been highlighted as the backbone of the compilation process. Logical languages
are no exception here and the compilation of Prolog to WAM instructions is a de
facto standard and well-known process. However, WAM code cannot be executed
directly on mainstream computers and need therefore some treatment in order to
be made executable. There exists classically two methods to execute WAM code: a
WAM emulator or a translator to native code.

Emulating the WAM code is usually the first solution that comes to mind. In
this approach, WAM instructions (byte-code) are simply considered as data that
will be treated by some emulator program, usually written in a language such as C
or assembler. The advantages of an emulator lie in its simplicity in writing (around
3000 lines of C code for an unoptimized version), its portability when it is written in
a general language such such as C, and its ability to create and dynamically modify
WAM code. These advantages make it the main trend among Prolog developers.
However this approach has a major drawback in the overhead of the emulation,
that is in the cycle: fetching, decoding and executing. Another drawback is that it

is not possible to produce an autonomous executable program as output, because
the emulator has to be present.

Producing native code has characteristics that are roughly opposite to that of
emulation. Writing a translator from abstract code to machine code is a difficult
task requiring a deep knowledge of the target machine. Good performances are
at this price, especially on RISC architectures where optimized code is essential.
Such compilers are not easy to port on new architectures: some aspect for which
a machine is particularly good at could possibly be the Achilles’ heel of another
machine. On the other side, developing a native code compiler consists of many
classical parts, maybe painful to develop but for which adequate techniques are
well-known, e.g. register allocation.

Since none of these methods satisfied our requirements we decided to try another
approach consisting in a translation of Prolog to C. The idea was to compensate the
lack of optimizations (required for simplicity) by the absence of emulation overhead
phases (fetching and decoding) since, finally, the C compiler would produce native
code. Doing this we would combine the advantages of emulation and compilation to
native code. However no such experience had been done when we decided to develop
our systenﬂ back in 1991. Even today, three years later, no implementation of
Prolog based on the compilation to C is available outside our own wamcc system.
However in the meanwhile several implementations of deterministic committed-
choice languages have opted for this approach: Janus [7], KL1 [3] and Erlang [§].
They are all based on a different compilation scheme, and it is interesting to compare
them with wamcc for deterministic Prolog.

3 Existing Logic Programming translators

We will detail in this section how Janus, KL1, Erlang and wamcc handle the con-
trol flow. This presentation is inspired from [5] which uses a goal stacking model.
However, we do not follow the same abstraction to be closer to what is really imple-
mented. As a consequence of this choice, the C code associated to WAM instructions
is explicitly described. Due to space limitations we only adress here the problem
of the control. This is motivated first by the fact the WAM used by wamcc is a
conventional WAM without any optimizations and thus the code for other instruc-
tions is now well-known [I]. Second, doding efficiently the control is crucial in the
translation to C because the WAM code is flat and execution transfers are done
by branchings. This is different from C which is more suited for high-level control
structures such as functions and does not provide much for low-level control. There-
fore the main problem will be to find an adequate solution for translating WAM
branchings. Our presentation will be based on the following example, consisting in
only one clause and one fact:

p: allocate /* pi-q, r. */
call(q)
deallocate
execute (r)

q: proceed /* q. =*/

This simple example nevertheless shows all the instructions used for the control
of Prolog in the deterministic case. The manner to translate call and execute

Lalthough there has been an unsuccessful experiment at ECRC at the end of the 80s.

will in particular highlights how to manage direct branchings (i.e. when the target
address is a known label), whereas the translation of the proceed instruction has to
solve the problem of indirect branchings (i.e. when the target address is the content
of some variable, the CP register in this case).

3.1 Janus

The implementation of Janus is based on the straightforward idea of translating a
WAM branching by a C branching, i.e. a goto instruction. A similar method has
been used in the Prolog compiler described in [11]. However problems arise because
indirect branching is not available in standard (ANSI) C (and must therefore be
simulated) and also because goto instructions can only address code within the same
function. The solution therefore leads to a C program consisting of a unique function
with a switch instruction to simulate indirect gotos. Following this method, our
previous example will be translated to:

fct_switch()

{

label _switch:
switch(PC) {

case p: /* p:—- q,r . */
label p:
push(CP) ; /* allocate */
CP=pi; /* call(q) */
goto label g; VAT
case pl:
pop(CP); /* deallocate */
goto label r; /* execute(r) */
case q: /* q. */
label q:
PC=CP; /* proceed */
goto label switch; /x : %/

}

This method is expensive on RISC machines since a switch-statement costs about
10 machine instructions (including bound checks). However, the major drawback
of this approach is that a program gives rise to a single function. Hence, except for
toy examples, it generates an enormous function that the C compiler is not able to
treat in a reasonable time. Coping with modularity is not easy in this setting, as
it requires consulting a dynamic table for each predicate call in order to pass the
control to the switch function of this module. Moreover, to support full Prolog, one
has also to take care to correctly handle backtracking in case of context changes.
Supporting modularity is therefore penalizing, and an extra-module call will be
much more costly than an intra-module call.

3.2 KL1

As the compilation to a single C function is unrealistic, the C program representing
the WAM code has to be sliced into several functions. Translating each Prolog
predicate into a C function seems therefore natural. WAM branchings will give
rise to function calls. Such a function will call another nested function (branching)
before returning, and so on; in such a way in fact that it will never return before
the end of the program. The data accumulated in the C control stack are therefore
useless and can lead to a memory overflow. The solution is thus to return from any
function before executing a branching, and to have a supervisor process in charge
of branching to the adequate continuation. This leads to the following code for our
continuing example:

fct_supervisor()

{

while (PC)
(*PC) O ;
}

void fct_p() /* p:- q,r. */

{

push(CP) ; /* allocate */
CP=fct_p1; /* call(q) */
PC=fct_q; /x i x/

}

void fct_pl()

{
pop(CP); /* deallocate */
PC=fct_r; /* execute(r) */

}

void fct_q() /* q. */

{
}

The code depicted above can be optimized by suppressing the PC register since
its information can be returned by the functions. Thus, each function realizes
in-line computations and terminates returning the address where the control has
to be passed when a branching is required. The analysis of this method shows
that a WAM branching is implemented by a return to the supervisor followed by
a function call. This is obviously much more costly than the simple jump which
would be generated by a native code compiler. However extra-module calls are now
possible without extra cost. The first implementation of wamcc used this technique
and was about twice as slow as emulated Sicstus. KL1 opted for a trade-off in
order to reduce function calls and returns: all predicates within the same module
are translated into a single function. Hence when only one module is used, KL1
behaves like Janus. The supervisor function is only needed for context switching on
extra-module calls, which are therefore more costly than intra-module calls.

Let us conclude by remarking that this method (with or without the improve-
ment proposed in KL1) is the most suited for a 100% ANSI C solution.

PC=CP; /* proceed */

3.3 Erlang

In Erlang also a predicate is translated into a C function. However, in order to
avoid the overhead of function calls and returns, Erlang takes advantage of the
new possibilities offered by the GNU C compiler (gcc). Indeed gee considers (jump)
labels as first class objects and makes it possible to store a label in a pointer variable
and to make in the subsequent execution an indirect jump to the value pointed by
such a variable. The idea thus consists in translating a WAM branching to an
indirect jump going inside a C function, in order to avoid the extra cost of the call.
A global table storing all addresses is then needed, which must be initialized by a
first call to each function. Back to our unavoidable example, this produces:

void fct_p() /* p:- q,r. */
{
jmp_tbl [p]l=&&label p; /* (initialization) */
jmp_tbl[pl]l=&&label pil;
return;
label p:
push(CP) ; /* allocate */
CP=&&label pl; /* call(q) */
goto *jmp_tbl[ql; /x 1 %/
label_pil:
pop (CP) ; /* deallocate */
goto *jmp_tbl[r]; /* execute(r) */

}

void fct_q() /* q. */

{

jmp_tbl[q]l=&&label g; /* (initialization) */
return;

label q:
goto *CP; /* proceed */

}

All branchings are done by indirect goto through a global address table. In
order to eliminate the cost of this indirection for direct jumps, Erlang operates
as KL1 or Janus and compiles into a single function all the predicates of a given
module. Hence only extra-module calls need the consultation of the global address
table, and would therefore be more costly that intra-module calls.

Observe that branching directly inside a function and avoiding the prologue
makes it impossible to use local variables (no room is reserved in the C stack) and
thus implies to only use global variables. Note also that any instruction must not
be moved before the entry labels, and this is quite difficult to guarantee. Let us
consider the access to an element of the global table. This is compiled into a load of
the address of the table followed by an instruction for accessing the given element.
The compiler can take the liberty to optimize the table accesses and to place the
loading of the table address at the very beginning of the function, where it assumes
that it will always be executed. This would cause a problem when a jump inside
the function will happen and will try to use the uninitialized register.

4 The wamcc approach

The three methods proposed above have all in common to behave similarly within
a single module, giving rise to a single large function that the C compiler has
much pain to compile. Extra-module calls are, if they are possible, more costly
than intra-module calls. Hence the manner in which a program is decomposed in
modules influences not only compilation time but also execution time, in inverse
proportions evidently.

The objective of the second version of our wamcc system was to translate a WAM
branching into a native code jump. As the decomposition into several functions is
mandatory, these jumps should reach blocks of code inside a function. To produce
direct branchings we have to be able to determine labels statically (at compile time)
rather than dynamically (at execution time). The pair “compiler + linker” is well
suited to do this for the addresses of functions. The solution adopted in wamcc is
then to insert a label at the entry of each function thanks to asm(...) directives.
To manipulate the addresses of those labels, say L, one just need to fool the compiler
and let him believe that L is an external function by declaring a prototype for the
function L and by using the symbol L (in C the name of a function is its address).
The compiler then generates an instruction with a hole that will be filled in by the
linker with the knowledge of all inserted labels (internal and external). The cost of
an extra-module call is then exactly the same as that of an intra-module call. To
finish with our favorite example, the code produced will be:

void label p(); /* prototypes */
void label_p1();

void label q();

void label r();

#define Direct_Goto(lab) lab()
#define Indirect_Goto(p-lab) (xp_lab) ()

void fctp() /* p:- q,r. */

{

asm("label p:");

push(CP) ; /* allocate */
CP=1abel pil; /* call(q) */
Direct_Goto(label q); /x i ox/

}

void fct_pl(

{

asm("label pl:");
pop(CP); /* deallocate */
Direct_Goto(label_r); /* execute(r) */

}

void fct_q(Q) /* q. */

{

asm("label qg:");
Indirect_Goto(CP); /* proceed */

Only two macros are needed to realize branching, direct or indirect, and they
depend on the machine architecture. For instance on a RISC machine, we have:

e Direct_Goto(lab) for simply invoquing the lab function.

e Indirect_Goto(p_lab) for invoquing a function whose name (address) would
be stored in p_lab.

Indeed on a RISC machine the instruction for a function call passes the con-
trol to the given address (as a jump) and initializes the continuation pointer of the
processor. Because of the RISC architecture, this instruction is as fast as a simple
jump. As nothing is stacked, it can be used for branching (the fact that the con-
tinuation pointer is updated is without important because we know that it is not a
real function call but a mere jump). Doing this way avoids the need for inserting
jump instructions in the assembly code. Moreover, RISC branch instructions can
only access code relatively close to the current instruction whereas the function call
instruction does not follow this limitation and this is indeed needed for accessing
code potentially far because of the module decomposition. Let us finally note that
leaving the generation of the function call to the C compiler allows it to optimize
the delay slot to take advantage of the instruction pipelineﬂ To sum up:

e direct jumps are executed as fast as possible because they are translated into
native code jumps (or in case of RISC architectures into function calls of
equivalent cost).

e extra-module calls are not more costly than intra-module calls.

e compared to previous approaches where all the predicates of a single module
were compiled into a single function, this method gives rise to as many func-
tions as they are goals in the body of a clause (head and first goal counting
one). The code produced is therefore compiled faster (see later).

e cach function has only one direct entry point at the very beginning, thus only
the prologue is jumped over. To allow for local variables, some (big enough)
space is reserved in the C control stack before starting the computation by
defining an array in an intermediate function. Thus the C stack pointer sp
points to the end of the array. Local variables will be allocated within this
array (see below).

e the only assumption underlying this approach is therefore that the prologue
does nothing but decrement sp. This is generally the case except for a few
machines where the C compiler does not reference local variables through sp
but through another £p register (frame pointer) that will be set at the function
entry to sp. This is intended to help the debugger and it is usually possible to
deactivate this operation by a compiler option. In the case this is not possible
one can always generate an asm directive to initialize this fp register.

e it is possible to have real function calls inside these pseudo-functions. In
particular most of the macros associated to WAM instructions are expanded
into call to the wamcc library. This makes it possible to favorize code size (and
compilation speed) to the (small) detriment of execution speed.

2on some RISC processors the instruction immediately following a jump or function call (delay

slot) is always executed because it is already in the pipeline. Compilers try to use this particularity
by moving a pertinent instruction after the branching. When this is not possible, a nop instruction
is generated.

Let us now detail the code needed for starting the computation as described
above. Suppose that the first predicate (usually a top-level) is at address p_lab:

#include <setjmp.h>
jmp-buf jumper;

void Label_Success();
void Label Fail();

Bool Call_Prolog(WamCont p-lab)
{
Create_Choice_Point();
ALTB(B)=Label_Fail;
CP=Label_Success;

ret_val=setjmp (jumper) ;
if (ret_val==0)

void Call _Next(WamCont p_lab)

{

int t[1024];

Indirect_Goto(p_lab);

}

void Call Prolog_Success(void)
{

asm("Label_Success:");

longjmp (jumper,2) ;

void Call Prolog Fail(void)

Call Next(p_lab); {

asm("Label Fail:");

Delete_Choice_Point();
return ret_val==2;

}

The Call_Prolog function has to execute the predicate whose address is p-lab.
It starts creating a choice point in order to record the address to branch to in case of
failure (Label Fail). The CP, indicating which code to execute after the predicate
success, is initialized with Label_Success. Finally a setjmp is executed in order to
allow later return to the instruction after the setjmp. The Call Next function is
called for reserving enough space in the C stack for possible local variables (c.f. the
declaration of array t). The control is then given to the predicate, that will execute
as detailled previously. In case of success (resp. failure), the control is transferred to
Label Success (resp. Label_Failure) that will simply return to the Call_Prolog
function by a longjmp with the second parameter set to the value 2 (resp. 3).

longjmp (jumper,3) ;

5 Memory management

We just recall here that the WAM memory management consists in using three
stacks: the Local Stack for control blocks and local variable, the Heap for data
structures, and the Trail for storing bindings to undo upon backtracking.

It is mandatory to control the growth of stacks and to alert the user in case of
overflow. This is usually done by incorporating software tests either at each memory
allocation (potentially several times for each clause for the Heap) or at each clause
entry (checking all stacks) or thanks to new WAM-like instructions. In any case
this control is costly, all the more because basically current machine architectures
allow for hardware tests. Indeed machines use virtual memory, meaning that the
user does not have to bother about physical addresses and real memory size, and
provide, logically if not physically, very big linear memory (e.g. 4 GBytes on 32 bits
architectures). When some data must be accessed, the memory manager detects if
the memory page to which it actually belongs is physically present in memory or
not (page default). In the later case, the memory manager loads it in memory after

(hi gh)

‘| ocal

st ack
initially

1 gi ven back
pages
al | ocat ed

pages / heap

trail

(Iow

Figure 1: memory allocation

swapping another page on disk if necessary. Interestingly, the memory manager
raises an exception signal when a page default refers to an un-allocated (i.e. free)
page. The idea is therefore to have such a signal raised in case of stack overflow. To
ensure this we only have to free (i.e. to give back) each page following a stack (see
ﬁgure. When an attempt to read/write in this page occurs the signal triggered is
caught by a C function (handler) responsible of diagnosing the overflow (checking
top stack pointers) and of generating the adequate error message. The easiest way
to implement this scheme is to use the Unix mmap function which makes it possible
to map a file to a part of memory. All pages of this part are initially marked as
“swapped” on the corresponding page of the file. Then, readings and writings on
this file are then done by simply reading and writing the memory. There usually
exists a special device (/dev/zero) returning zero on initial readings and on which
writings are not reflected. This device is then well suited for our stacks since
only memory operations are performed. Thanks to the munmap function, each page
following a stack is given back to the memory manager. In case of the absence
of mmap functions on a particular machine, it is possible to use those handling the
sharing of memory between processes (shmget, etc), as they also make it possible
to get and free back memory. Finally, for machines without even those functions,
wamcc uses the standard C memory allocator (malloc) and performs software tests
to check overflows.

10

6 Performance Evaluation

Let us now detail the performances of the wamcc system and compare them with
that of other Prolog systems either academic or commercial.

6.1 Benchmark programs

Table 1] presents the performances of wamcc on classical set of benchmarks. Timings
are in seconds measured on a Sparc 2 (28.5 Mips) using gcc 2.5.8 with the -02 option.
For each program, one can find: the number of lines of the Prolog source program,
the total compilation time (Prolog to C, gcc, linker), the size of the object code and
of the final executable (KBytes) and the execution time.

Lines | compilation | object | executable | execution
Program time size size time
boyer 395 64.0 48 240 3.450
browse 111 21.0 12 208 4.020
cal 202 18.0 12 208 0.300
chat_parser 1184 290.0 132 328 0.980
crypt 96 16.0 10 200 0.016
ham 90 14.0 10 200 4.330
meta_gsort 146 18.0 10 200 0.045
nand 574 202.0 76 264 0.120
nrev 105 9.0 5 200 0.600
poly_10 112 16.0 11 200 0.300
queens (16) 95 7.0 3 192 2.440
queens_n (8) 79 9.0 5 200 0.700
queens_n (10) 79 9.0 5 200 13.680
reducer 388 50.0 37 232 0.270
sdda 327 32.0 23 216 0.015
sendmore 66 12.0 8 200 0.230
tak 35 5.0 2 192 0.550
zebra 57 9.0 6 200 0.260

Table 1: Performances of wamcc

6.2 wamcc versus academic Prolog systems

Let us in a first time compare wamcc with other systems in the same category:
academic Prolog systems, usually developed for research purposes by a single person
and freely distributed by ftp. Among the number of available such systems, we
have chosen only the most popular ones. We thus have:

BinProlog 3.0: this implementation is based on the “binarization” of clauses,
which roughly consists in making the continuations explicit. The WAM is
specialized and the abstract code is emulated (by an emulator written in C).
Recently the author has also investigated a translation to C [12].

XSB-Prolog 1.4.0: this language is the follower to the popular SB-Prolog. It also
uses an emulator written in C but integrates partial evaluation techniques for

11

specializing partly instantiated calls. It can also detect some cases of determi-
nacy and efficiently compile control structures such as Prolog if-then-else.
The compilation phase can therefore be quite long.

SWI-Prolog 1.8.11: the characteristics of this system are its compilation speed
and the variety of built-in predicates that it provides. It is up to now one of
the most frequently used academic Prolog systems.

Table 2] shows the execution times of those various systems and the average
speedups of wamcc. An owverflow entry in the table means that memory was ex-
hausted before completion of the program with maximal stack sizes.

wamcc | BinProlog | XSB-Prolog | SWI-Prolog
Program 2.21 3.0 1.4.0 1.8.11
boyer 3.450 6.700 11.450 21.200
browse 4.020 7.930 11.850 18.180
cal 0.300 0.920 1.420 5.120
chat_parser 0.980 1.200 1.790 2.050
crypt 0.016 0.017 0.040 0.100
ham 4.330 5.280 8.840 12.650
meta_gsort 0.045 0.100 0.140 0.130
nand 0.120 0.320 over flow 0.420
nrev 0.600 0.520 1.040 3.350
poly_10 0.300 0.420 0.720 1.200
queens (16) 2.440 4.670 6.480 31.220
queens n (8) 0.700 0.920 1.560 3.450
queens_n (10) 13.680 16.030 28.541 56.180
reducer 0.270 0.550 over flow 0.930
sdda 0.015 0.030 0.050 0.030
sendmore 0.230 1.100 0.670 2.580
tak 0.550 1.400 1.430 651.000
zebra 0.260 0.400 0.530 0.580

H average speedup of wamcc \ 2.0 \ 2.7 \ 5.3 H

Table 2: wamcc versus other academic Prologs

On average wamcc is twice as fast as BinProlog on average. However, on the
nrev benchmark, BinProlog performs faster than wamcc. This is due to the very
simple WAM used in wamcc which does not include any well-know optimization
(like separate unification streams, shallow backtracking, unification reordering,...).
We can also remarks that wamcc is 2.7 times faster than XSB-Prolog, and 5.6 times
faster than SWI-Prolog (without taking into account the tak benchmark).

6.3 wamcc versus commercial Prolog systems

Let us now compare wamcc with commercial Prolog systems, usually developed by
several people over several years. The Prolog systems to which wamcc is compared
are:

Sicstus: this system is very popular because it has been one of the pioneering
efficient systems available for a small fee. It has become a de facto reference

12

for performances of Prolog systems. The current version can produced byte-
code (emulated) as well as native code (for Sparc). We here compare wamcc
to both versions.

Quintus: it has been for a long time the most efficient system. It is based on an
optimized emulator written in assembly language. Note however that we only
have version 2.5.1 which is not the most recent one.

Aquarius: this is currently the most efficient Prolog system. It is very complex and
produces native code via an original abstract machine (the BAM) more low-
level than the WAM. The compiler performs many optimizations (data-flow
analysis, abstract interpretation, determinism detection,...). The translation
of BAM code to native code is also quite sophisticated and integrates for
instance instruction reordering for Sparc machines.

wamcc Sicstus Sicstus | Quintus | Aquarius
2.21 2.1 2.1 2.5.1
Program (emulated) | (native)
boyer 3.450 4.940 2.350 2.850 2.750
browse 4.020 6.630 2.020 3.340 1.380
cal 0.300 0.890 0.540 0.500 0.290
chat_parser 0.980 1.130 0.500 0.650 0.350
crypt 0.016 0.027 0.013 0.017 0.010
ham 4.330 5.050 2.090 3.000 0.950
meta_gsort 0.045 0.048 0.021 0.050 0.015
nand 0.120 0.200 0.084 0.130 0.040
nrev 0.600 0.630 0.190 0.250 0.160
poly-10 0.300 0.320 0.150 0.250 0.070
queens (16) 2.440 4.930 1.280 2.820 0.610
queens_n (8) 0.700 0.980 0.370 0.580 0.130
queens_n (10) 13.680 18.200 7.250 10.780 2.250
reducer 0.270 0.270 0.120 0.270 0.100
sdda 0.015 0.023 0.016 0.017 0.010
sendmore 0.230 0.630 0.170 0.280 0.080
tak 0.550 1.020 0.390 1.620 0.060
zebra 0.260 0.300 0.230 0.230 0.160
H average speedup of wamcc \ 1.6 \ 117 \ 1.0 \ 137 H

Table 3: wamcc versus commercial Prologs

Table |3| presents execution times for those systems and the average speedup (or
slowdown when preceded by a | sign) of wamcc. Let us note that the initial objective
is achieved, as wamcc is about 1.6 faster than emulated Sicstus. It is also 1.7 times
slower than native code Sicstus and equivalent in performances to Quintus. wamcc
is however more than 3.5 times slower than Aquarius on average, but this is mainly
due to the very good performance of Aquarius on the tak benchmark (9 times faster
than wamcc), because it can detect determinacy and optimize the terminal call for
integers. Let us note that the Aquarius program is twice as fast as a corresponding
C program ! However, on real Prolog programs (using unification and backtracking)
the difference is smaller, as for instance on the zebra puzzle Aquarius is only 1.3

13

times faster and on the boyer program Aquarius is less than twice as fast. Let
us remark that this system does not handle modules and thus can extract more
information at compile-time allowing it to produce better code (e.g. symbols can
be pre-hash-coded). This is no longer possible when dealing with several modules.
Observe that wamcc has been developed by a single person in only few months
and it therefore quite honorably compares with sophisticated systems written over
several years by teams of several implementors. Another important issue is the fact
that wamcc is much simpler. Comparing the code complexity of the core of (native
code) Sicstus (35000 lines of C) and of wamcc (6000 lines), we are far from the
performance advantage of Sicstus (factor 1.6). Also The Sicstus compiler consists
of 9000 lines of Prolog whereas the wamcc compiler is only 3000 lines long. About
Quintus, the heavy use of assembly language gives a system which is more difficult
to maintain and extend, while performances are not better than that of wamcc.
Aquarius has remarkable performances, but mainly on deterministic and arithmetic
programs, which are not the most typical Prolog applications one can hope to write.
On the contrary, the fact that Aquarius requires about 38 minutes to compile a 400
lines long program (reducer) seems unrealistic. wamcc only takes 5 minutes to
produce an executable program which is maybe 2.7 times slower but anyway takes
less than one second. Another drawback of the Aquarius system is the size of
produced code which is around 4 times bigger than this produced by wamcc.

7 Conclusion

We have presented the design and implementation of wamcc, a complete Prolog sys-
tem based on the idea of compiling Prolog to C. We have shown that this alternative
is viable and provides various advantages. The system obtained in this way is sim-
ple, extensible, portable (wamcc works on machines as different as 32-bit Sparcs and
64-bit Alphas) efficient and provides modularity at no extra-cost. This system is
faster than all other academic Prologs and compares reasonably well with commer-
cial systems, e.g. its performances are equivalent to those of Quintus Prolog. This
is not a final step and these performances could be improved significantly simply
by optimizing the WAM code produced. Indeed, wamcc only uses a conventional
WAM without any well-known optimizations like: shallow backtracking, unification
reordering, separate read/write stream, global analysis, optimal term representa-
tion. This should fill the gap between wamcc and the best implementations. wamcc
has also proved to be a sound basis for various extensions, such as in particular the
Constraint Logic Programming language c1p(FD).

However, the most important characteristic of wamcc perhaps lies in its mini-
mality and its “pyramidal” architecture based on the fact that there exist efficient
low-level compilers able to take care of low-level tasks such as register allocation
and various code optimizations. For instance it is now possible to access machine
registers with the gcc compiler. Also the last version of gee (2.6.0) provides new
super-scalar instruction scheduler for Sparc and should bring some extra 10-15 %
performaces on these machines for free. In the PC world, the Symantec C+-+
compiler is more performant than gcc both in compilation time and in quality of
produced code and thus will be used when wamcc will be ported under MSDOS.
The advantage of “reusing” instead of “rewriting” is therefore enormous. It saves
time for research on more adventurous topics and it avoids producing ad hoc im-
plementations which turn to be impossible to maintain, modify or extend.

14

How to get wamcc

The wamcc system is available by anonymous ftp at ftp.inria.fr in the directory
/INRIA/Projects/ChLoE/LOGIC_PROGRAMMING/wamcc. A README file explains the
installation procedure.

References

1]

2]

H. Ait-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction. Logic
Programming Series, MIT Press, 1991.

K. De Bosschere and P. Tarau. A Continuation Based Prolog-To-C Mapping.
In ACM Symposium on Applied Computing, Phoenix, Arizona, 1994.

T. Chikayama, T. Fujise and D. Sekita. A Portable and Efficient Implemen-
tation of KL1. In ICOT/NSF Workshop on Parallel Logic Programming and
its Programming Environments, CIS-TR-94-04, Department of Computer In-
formation Science, Oregon, 1994.

B. Demoen and A. Marin Can Prolog Execute as Fast as Aquarius. draft, BIM
Kwikstraat, Everberg, Belgium, 1994.

B. Demoen and G. Maris. A Comparison of some Schemes for Translating
Logic to C. In Workshop on Implementations of 11th International Conference
of Logic Programming, Santa Margherita, Italy, MIT Press 1994.

D. Diaz and P. Codognet. A Minimal Extension of the WAM for c1p(FD).
In 10th International Conference of Logic Programming, Budapest, Hungary,
MIT Press 1993.

D. Gudeman, K. De Bosschere and S. Debray. jc: An Efficient and Portable
Sequential Implementation of Janus. In Joint International Conference and
Symposium on Logic Programming, Washington, MIT Press, 1992.

B. Haussman. Turbo Erlang: Approaching the Speed of C. In Implementations
of Logic Programming Systems, Evan Tick (ed.), Kluwer 1994.

M. R. Levy and R. N. Horspool. Translator-Based Multiparadigm Program-
ming. Journal of Software and Systems, 1993.

M. R. Levy and R. N. Horspool. Translating Prolog to C: a WAM Based
Approach. In 2nd Compulog Network Area Meeting Programming Languages
and the workshop on Logic Languages, Pisa, Italy, 1993.

T. Solla. PhD dissertation (to appear), THOMSON-CSF, France, 1994.

P. Tarau, B. Demoen and K. De Bosschere. The Power of Partial Translation:
An Experiment with the C-ification of Binary Prolog. ACM Symposium on
Applied Computing, Nashville, ACM Press, 1995.

P. Van Roy and A. Despain. High-Performance Logic Programming with the
Aquarius Prolog Compiler. IEEE Computer, pp 54-67, 1992.

D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309,
SRI International, Oct. 1983.

15

	Introduction
	Below the WAM
	Existing Logic Programming translators
	Janus
	KL1
	Erlang

	The wamcc approach
	Memory management
	Performance Evaluation
	Benchmark programs
	wamcc versus academic Prolog systems
	wamcc versus commercial Prolog systems

	Conclusion

