
Lecture Notes in Computer Science

A new approach to the Interactive Resolution of
Configuration Problems in Virtual Environments

Carlos Calderon1, Marc Cavazza1, and Daniel Diaz2

1 School of Computing and Mathematics, University of Teesside,
UK-TS1 3BA, Middlesbrough, United Kingdom

{c.p.calderon, m.o.cavazza}@tees.ac.uk
University of Paris 1

90 rue de Tolbiac, CRI bureau C1405 Paris, 75013, France
Daniel.diaz@univ-paris1.fr

Abstract. Intelligent Virtual Environments integrate AI techniques with 3D
real-time environments. As such, they can support interactive problem solving,
provided the underlying AI techniques can produce solutions within a time
frame matching that of user interaction. In this paper, we describe an intelligent
virtual environment based on Constraint Logic Programming (CLP), integrated
in a real-time 3D graphic environment. We have developed an event-based ap-
proach through which user interaction can be converted in real-time into appro-
priate solver queries which are then translated back into automatic reconfigura-
tions of the Virtual Environment (VE). Additionally, this framework supports
the interactive exploration of the solution space in which alternative solutions
(configurations) can be found. We demonstrate the system behaviour on a con-
figuration example. This example illustrates how solutions can be interactively
refined by the user through direct manipulation of objects in the VE and how
the interactive search of alternative solutions in the VE is supported by these
type of systems.

1 Introduction

Virtual Environments (VE) can be used to represent complex situations. It is thus a
logical evolution to extend them to carry out problem solving tasks as well. In these
systems, called Intelligent Virtual Environments [1] the visual space is directly inter-
faced to a problem solver. Interacting with objects in the VE serves as input to the
problem solver, which outputs new solutions directly as, in this instance, object con-
figurations. This kind of system has many potential applications in design, configura-
tion, situation assessment, etc.

This research aims at the integration of interactive visualisation with interactive
problem solving in virtual worlds. A central argument to this paper is to reach a high-
level of integration between the visualisation component and the problem-solving
component. This can be achieved by selecting a problem solving technique compati-
ble with the nature of user interaction in Virtual Reality (VR) (including its time-
scales) and integrating them using an interaction model.

Lecture Notes in Computer Science

Our problem-solving component is based on Constraint Logic Programming
(CLP). Generally speaking, constraint programming is an optimisation technique that
provides solutions in terms of relations between domain variables. The solving
mechanisms of many constraint systems can be triggered by any modification of
variable values. More specifically, physical interaction with the virtual world objects
can be translated into real-time input to the CLP solver by selecting the variables
whose values have been altered by the interaction. This supports data-driven changes,
and provides a strong basis for its integration in an interactive VR system. For in-
stance, when visualising a configuration, the user can alter the position of certain
objects which modifies the constraints involving these objects. This triggers the
solver on a new set of variables. The solver in turn outputs resulting solutions in the
form of new object configurations within the environment, thus seamlessly integrat-
ing the solving process in the VR interaction loop.

Previous work using constraint logic programming in 3D environment has essen-
tially been dedicated to the behaviour of individual objects or autonomous agents
within the environment. For instance, Codognet [2] has included a concurrent con-
straint programming system into VRML (VRCC) to specify the behaviour of artificial
actors in dynamic environments. Axling et al. [3] have incorporated OZ [4], a high-
level programming language supporting constraints, into the DIVE [5] distributed VR
environment. Both Axling and Codognet have put emphasis on the behaviour of indi-
vidual objects in the virtual world and did not address user interaction or interactive
problem solving. However, CLP naturally provides solutions for combined behav-
iours, in this instance, for sets of objects. This is the property we use to implement
behaviours for the virtual environment as a whole.

As demonstrated by Honda [6] and Pfefferkorn [7], CLP techniques are particu-
larly appropriate for the resolution of configuration problems. Both have demon-
strated the suitability of CLP as an approach based on: the declarative nature of the
formalism, which facilitates the description of the problem, and its efficiency for
avoiding combinatorial explosion. Our approach extends Honda and Pfefferkorn into
the realm of 3D real-time environments and demonstrates that CLP techniques can
produce solutions within a time frame matching that of user interaction. Conse-
quently, seen from the user’s perspective, the VE reacts to the user’s interaction by
reconfiguring itself. Furthermore, once an initial solution has been found, the frame-
work we propose in this paper enables the user to interactively search for alternative
solutions in the VE.

2 System Overview

The system is an interactive 3D environment, developed using the Unreal Tour-
namentTM (UT) game engine, in which the user can freely navigate and interact with
the world objects. That is, the system initially proposes a first solution (in the form of
a configuration of objects) which serves as a starting point for user’s exploration of
possible configurations. Once the user has explored this configuration, he can interact
with it by displacing the constituent objects. The correct allocation of an object in-

Lecture Notes in Computer Science

stantly triggers new solutions (configurations) from the solver which, in turn, are
displayed in the virtual environment (see Figure 1).

The intelligent configuration module (the solver) is based on Constraint Logic
Programming (CLP). We have used GNU Prolog [8] as a programming environment,
which contains an efficient constraint solver over Finite Domains (FD). This allows
the implementation of many different types of constraints which can be represented
over a finite domain, i.e. an ordered list of properties. This makes possible to repre-
sent “semantic” constraints, i.e. constraints involving object properties such as mate-
rials, friction coefficient, resistance to fire, etc. In the following sections, we give a
more detailed insight into the implementation considering the specific techniques
used.

3 The Interaction Model

The aim of the interaction model is to relate the user interactions which are taking
place in the virtual environment to the I/O of the solver, within an interaction rate
which is that of the user. The solver works with a specific logic, according to which it
is triggered by the addition of new clauses and its results are produced as sets of vari-
able allocations. The interaction model should bridge the gap between these two dif-
ferent logics, from the dynamic perspective of the user’s intervention. We thus dis-
cuss two aspects: firstly how the solver is made to react to user input, secondly how
results produced from the solver should interactively modify the virtual environment.

Unreal tournament supports the real-time generation of events, i.e. those generated
by the user’s transformation of a configuration displayed in the virtual environment.
These events (see Figure 2) are used to generate new “queries” to the solver (using
the term query in its Prolog sense). Consider the following example, where from a
deployed configuration the user displaces an object, e.g ATM, to a new position. The
event is automatically generated from the user’s physical interaction. In this case,
when the user drops an object using the low-level interaction features implemented in
the game engine, this triggers the corresponding event. From this event, a new query

Fig 1. The user refines a given configuration by reallocating an object. As a result of
this, the environment reconfigures itself.

Lecture Notes in Computer Science

is passed to the solver which takes the form of a new Prolog fact about the altered
object (this would replace older facts about that same object). This new fact is passed
as a structured message via a TCP/IP socket.

The solver is triggered by the reception of the new query via the socket: a listening
mechanism, a server embedded in the solver, translates the received message into an
actual query, that is able to trigger a new solution. The solving mechanism produces
solutions one by one, but the search is interrupted after the production of the first
solution, as solutions have to be proposed interactively A solution is a set of object
positions, whose variables are the targets of the constraint solver.

The set of new object positions is passed as another message via the same TCP
socket. In the virtual environment, the reception of this message triggers the corre-
sponding series of low level events specifically implemented in the engine. The end
result of these events is the transformation of the accepted message into a new con-
figuration in the virtual environment.

It must be noted that, according to our results, the communication time for the
overall cycle is on average less than 20ms, which is fully compatible with the user
interaction (as the user is not navigating when interacting with objects).

4 Example

An intelligent configuration system is used as an application example. The data used
in this configuration scenario is derived from a simple yet realistic example which
uses real-world design knowledge in terms of building interior design for offices (a
bank agency in our case). More specifically, the data used for both objects and con-
straints was drawn from real specifications [9].

In our intelligent configuration system, the spatial relationships between the ob-
jects in a layout configuration are all known and the constraints whose formulation
depends on these relations reflect those specific spatial relations. Moreover, the ob-
jects involved in the configuration have been divided into non-movable objects (e.g.
ventilation ducts, sources of heat, etc) and movable objects (e.g furniture: sofas,
desks, etc). This is a purely semantic distinction which can be easily reversed. In our
case, this means that whilst all objects take part in constraints specifying the design
requirements, the user will only interact with the movable objects: the furniture. Con-
sequently, when the user decides to reallocate a movable object, this, in turn, disrupts
the imposed constraints in the configuration and forces the system to re-allocate the

Fig 2. Interaction model.

Lecture Notes in Computer Science

remaining movable objects to generate a solution compatible with all the design re-
quirements.

In our case, the movable objects are: one vending machine, two desks (which
represent the customer attention area), two sofas (waiting attention area), two auto-
matic teller machines (ATMs), three fire extinguishers and four bins. This constitutes
a subset of 14 objects: considering the size of the environment and that the overall
size of the available set of constraints for each object is eleven, the corresponding
search space (abstract problem space) is substantial and indeed impossible to search
systematically, even less so in real-time.

4.1 Problem representation in CLP

The problem knowledge (design requirements in our case) is expressed in the topo-
logical description of the 3D environment (non-movable objects or building ele-
ments) and in a set of constraints on the objects' attributes (movable objects or furni-
ture, see Figure 3). There are two types of constraints on the movable objects: local
and global constraints. Both types incorporate geometrical as well as more “seman-
tic” attributes such as lighting and temperature levels. That is, those constraints with-
out a geometrical component.

The topological constraints are inherited from the 3D environment and are trans-
formed into Prolog facts which describe room’s topological characteristics. Conse-
quently, from the user’s perspective, there is a perfect matching between the topo-
logical characteristics of the 3D environment and the Prolog facts implemented in the

Fig 3. CLP formalisms enable the transformation of design knowledge into a set of con-
straints between objects.

Lecture Notes in Computer Science

solver. For instance, sources of heat or radiators and different lighting levels are visu-
ally apparent to the user in the 3D environment. Therefore, both characteristics have
been formalised as Prolog facts:

These facts define the coordinates of the sources of heat (a list of points X/Y in the

search space) and the regions where the lighting level is less than 200 lux (a list
whose each element defines a lighting value and an associated rectangle –Areai- in
the search space).

In the example, there are also definitions for the location in the 3D environment of
the following elements: power points, ventilation ducts, special features (e.g. the
central fountain), queuing area, counters, walls, luminosity and temperature levels.

Local constraints are constraints on the attributes of a single object and specify
how the object relates to the topological characteristics of the virtual environment.
For instance, let us imagine that the user wanted to reallocate the object desk. The
new object location would be constrained by the object’s attributes (or design re-
quirements) expressed in the corresponding Prolog clause: object(desk, [fea-
tures_min(6), duct_min(3), power_max(3), luminos-
ity(300..500), temperature(19..24)]. This clause reads as follows: a
desk should be placed at a minimum distance of 6 units from any special feature (e.g.
the central fountain), at a minimum distance of from any ventilation duct, at a maxi-
mum distance of 4 from a power point, inside a region whose luminosity is between
300 and 500 flux and whose temperature is between 19° and 24°.

Global constraints are constraints whose formulation involves more than one ob-
ject and therefore, are imposed on the configuration. These constraints relate, for
example, objects of each kind, objects of two different types, all the objects and so
on. Consequently and following with the reallocation of a desk object, this not only
disrupts its local properties but also the properties that link that object to the rest of
the configuration. For example, the following constraint: dis-
tance_constraint (desk,atm,6,12) enforces the minimum and maximum
distance between 2 objects: a desk and an atm in this case. Hence, if the new alloca-
tion is nearer than six units or further than 12 it will force the atm to be reallocated
which, in turn, will force any other object linked to the atm to behave in the same
fashion. In this case, constraint propagation serves as the basics for interactive prob-
lem solving, as it solves the configuration problem created by the user by displacing
an object.

Global constraints are particularly relevant to express design requirements which
involve group of objects. For instance, the following requirement: fire extinguishers
and bins need to be distributed in the room to comply with health and safety regula-
tions has been implemented in a similar fashion.

source_of_heat([X0/Y0,X1/Y1,X2/Y2])
luminosity([lightingvalue = Area0, lightingvalue =
Area1, lightingvalue = Area2,])

Lecture Notes in Computer Science

4.2 Sample run

In this section, we give a step-by-step description of a system’s run on an example,
and for the sake of clarity we will only detail the internal mechanisms on a sub-
configuration extracted from the full application.

First running the system results in the solver producing a set of variable allocations
satisfying all the design constraints (see left side of Figure 1). These variables are
translated in the virtual environment in terms of object types and positions, which
spawns all furniture objects at their respective locations, thus constituting a first de-
sign solution.

Once the initial configuration has been deployed, the user can explore this first so-
lution by navigating in the virtual environment and test variants of the configuration
by changing objects’ positions.

For instance, let us image that the user is not satisfied with the initial allocation of
an object (e.g ATM is too close to the stairs). Consequently, the user seizes the ATM
object and proceeds to reallocate it while he explores the 3D environment. Once, a
suitable location has been found the user will drop the object. In our implementation,
the user’s actions trigger the corresponding Unreal events. For instance, when the
object is dropped an unreal event is triggered which sends the object’s location to the
solver in the appropriate query format (e.g atm=34/9.).

The solver has an embedded server which deals with all the incoming queries. In
other words, the server detects the incoming unreal events and transforms their con-
tent into logical terms which, in turn, prompt the main clause in the solver and trig-
gers a new solution search. Consequently and continuing with the example, when the
user seizes the ATM object he is disturbing both the local and the global constraints
attached to it. As shown in figure 4, an ATM object, can only be allocated away from

a source of heat (heat(Dist)) and, similarly, it needs to be away from any other
object of the configuration a specified distance (distance_constraint(Obj1,
Obj2, DMin, DMax)).

As a consequence, when the user decides to reallocate the object to a new position,
this in turn disrupts the imposed constraints in the configuration and forces the system
to “propagate” all the constraints and to generate a solution compatible with the de-

Fig 4. The solver uses generic constraints that can be instantiated on the VE’s
objects

Lecture Notes in Computer Science

sign requirements. This propagation and a non-deterministic search are the basic
mechanisms for interactive problem-solving. Thus, since the resolution process is
invisible to the user, seen from his or her perspective, the 3D environment automati-
cally reconfigures itself as a consequence of his/her interactions (see right side of
Figure 1).

Let us now describe the resolution phase as seen from the variables standpoint.
The resolution phase is divided into three stages: the Finite Domains (FD) of vari-
ables are defined, then the constraints are imposed (constraint propagation), and
finally the labeling stage (search) finds concrete solution(s).

For instance, let us think of a specific object: a vending machine (vm). Initially the
finite domain of its spatial variables is: vm=_#[0..35/0..35]. Then, the constraints are
imposed on the FD variables till no further domain reduction (due to constraint
propagation) is possible: vm = _#3(1..3 :11..13 :16..18 :24..25 :27..28) / _#25(1..2

:10..12 :23..25). This example
illustrates the power of con-
straint propagation and its im-
portance to support the integra-
tion of the solving process in
the VR interaction loop.

Consequently, when no fur-
ther reduction is possible, the
system must explicitly instanti-
ate the variables to reach or
“search” a solution: enumera-
tion or labeling stage (see Fig-
ure 5). In this case, the choice
of heuristics for labeling stage
is: first-fail –the variable with
the smallest number of elements
in its FD is selected- for the
choice of variable and “ran-
dom” for selection of value
(which gives us good execution
times and offers a good visual
aspect). Thus, this means that
the CLP Solver outputs a list of
predicates which contains the
objects’ types and spatial coor-
dinates: [Obj1=X1/Y1,
Obj2=X2/Y2, ….]. This list is
sent to the 3D engine where a
series of low-level system

events transform this incoming symbolic list into the configuration of objects dis-
played in the virtual environment. In our example, a possible solution would be the
following: [vm=1/12, atm=34/9, atm=32/1,desk=11/1] which corresponds to the con-
figuration displayed to the user in the virtual environment (see Figure 5).

Fig 5. The systems instantiates the variables to
propose a solution to the user: labeling stage.

Lecture Notes in Computer Science

Once the proposed configuration has been displayed, the user can explore all the
feasible alternatives. In our case, in order to enable the user to explore the solution
space a specific interaction mechanism has been implemented: when the user presses
a specified key, an implemented low-level event is generated by the visualization
engine which, in turn, produces a new “query” for the solver. Consequently and
following the implemented interaction model previously explained, this new query
triggers the deployment in the virtual environment of the next solution (see Figure 6).
The concept of next solution is intimately related to the heuristics used to explore the
search space. In other words, the heuristics used in the enumeration (search) stage
determined how the next solution is found. For instance and continuing with the ex-
ample, once a solution is proposed: [vm=1/12, atm=34/9, atm=32/1,desk=11/1]. The
user could request the next one which, according to the selected heuristic, is the
following: [vm=1/12, atm=34/9, atm=32/1,desk=12/2].

6 Conclusions

We have presented a novel
framework for the use of virtual
environments in interactive
problem solving. This frame-
work extends visualisation to
serve as a natural interface for
the exploration of configuration
spaces and enables the imple-
mentation of reactive virtual
environments.

This implementation is
based on a fully interactive
solution, where both visualisa-
tion and the generation of a new
solution are under the control of
user. In other words, our ap-
proach extends VR towards
fully interactive environments
by introducing the concept of
reactive environments which
react to the user’s interaction
whilst preserving the user-

centred aspects of VR: exploration and interaction in a 3D real-time environment.
Additionally, our approach supports the interactive exploration of the solution space
in which alternative solutions can be found.

The system has potential for extension in different directions. For instance, in
terms of mechanisms of user interaction, we envisage offering yet more interactivity
to the user for more efficient object manipulation [10][11][12]. For instance, it is

Fig 6. Next solution: first backtracking.

Lecture Notes in Computer Science

fairly simple to “lock” some objects in the virtual environment which would ensure
that an object will remain at the some location after the user has interacted with the
configuration. That is, the user could select a rectangle (an X and Y coordinates)
where he wants a given object to be located and the object will remain there. It is also
easy to dynamically redefine parameter for the objects, e.g, minimum/maximum dis-
tances amongst objects. As well, taking advantage of the incremental capabilities of
the solver, we could give the user the possibility of adding objects on-the-fly and to
choose the constraints for that objects from a set of predefined constraints.

In its current form, the system is still faced with a number of limitations, the most
important being the absence of an explanatory module that would provide the user for
justifications for the proposed solutions. Such a module is even more important to
explain why there exist no acceptable solutions for some object positions proposed by
the user. Further work will be dedicated to providing more feedback from the con-
figuration system.

References

1. Aylett, R. and Cavazza, M.: Intelligent Virtual Environments - A State-of-the-art Report.
Eurographics (2001).

2. Codognet, P.: Animating Autonomous Agents in Shared Virtual Worlds. Proceedings
DMS'99, IEEE International Conference on Distributed Multimedia Systems, Aizu, Japan,
IEEE Press (1999).

3. Axling, T., Haridi, S, and Fahlen, L.: Virtual reality programming in Oz. In Proceedings of
the 3rd EUROGRAPHICS Workshop on Virtual Environments, Monte Carlo, February
(1996).

4. Smolka, G, Henz, M and Wurtz, J.: Object-Oriented Concurrent Constraint Programming in
Oz. Research Report RR-93-16, Deutsches Forschungszentrum fur Kunstliche Intelligenz,
Stuhlsatzenhausweg 3, 66123 Saarbrucken, Germany, April (1993).

5. Andersson, M. Carlsoon, C. Hagsand, O, and Stahl, Olov.: DIVE –The Distributed Interac-
tive Virtual Environment, Tutorials and Installation Guide. Swedish Institute of Computer
Science, March (1993).

6. Honda, K. and Mizoguchi, F.: Constraint-based Approach for Automatic Spatial Layout
planning. Conference on Artificial Intelligence for Applications, IEEE Press (1995).

7. Pfefferkorn, C.: A heuristic problem solving design system for equipment or furniture lay-
outs. Communications of the ACM, 18(5):286-297. (1975).

8. Diaz, D. and Codognet, P.: Design and Implementation of the GNU Prolog System. Journal
of Functional and Logic Programming, Vol. 2001, No. 6. (2001).

9. British Educational Communications and Technology agency . Health and Safety: planning
the safe installation of ICT in schools. http://www.becta.org.uk / technology / infosheets /
html / safeuse.html (last visited 4/06/2002). (2002).

10. Bukowski, W. R. and Séquin, H. C. Object Associations. ACM Symp. On Interactive 3D
Graphics, Monterey, CA, USA, (1995).

11. Kallman, M. and Thalmann, D. Direct 3D Interaction with Smart Objects. ACM Interna-
tional Symposium on Virtual Reality Software and Technology, VRST 99, London. UK, De-
cember, (1999).

12. Stuerzlinger, W. and Smith, G. Efficient Manipulation of Object Groups in Virtual Envi-
ronments. Proceedings of the IEEE VR 2002, March 24-28, Orlando, Florida. (2002).

