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Abstract— Product line engineering is a reuse-driven 

development paradigm, founded on the management of 

product line variability; it has been applied successfully in 

information systems engineering and other domains. A 

common way to represent variability is with variability models 

that describe the artifacts, their relations and the valid 

artifacts combinations of a product line. Constraint 

programming, and in particular boolean constraint 

programming, has been used so far to support analysis of 

variability models such as Feature-Oriented Domain Analysis 

(FODA) and the like. This paper goes a step further by using 

constraint programming to specify product lines. The focus on 

variability, variation points or dependencies is switched to the 

concept of constraints that apply to variables. The paper shows 

that the concept of constraint is more general than the one of 

dependency; many constraints that that could be controlled 

cannot be specified with dependencies of existing product line 

modeling languages. The approach was implemented in a 

prototype tool, and its scalability explored with industry case 

studies. These experiments show that constraint programming 

encompasses existing product line modeling languages such as 

FODA or OVM (Orthogonal Variability Model) and open way 

to new possibilities such as reasoning simultaneously with 

different models during domain or application engineering. 

Keywords- constraints, product line specification, product 

line analysis, constraint programming 

I.  INTRODUCTION 

Propositional logic has been used to deal with Product 
Line Engineering (PLE) [1, 2, 3, 5]. More recent works [4, 6, 
28, 29] show the interest of the international community of 
PLE to represent and analyze Product Line (PL) models by 
using constraint programming. Indeed, an analogy can easily 
be drawn between features based PL models and Constraint 
Programming (CP) because both can be defined by a 
collection of variables and a collection of constraints that 
these variables should satisfy. In contrast, specify a product 
line as a constraint program instead of a feature model has 
two important advantages: the expressiveness and the 
directly automation. On the one hand, variables in CP can 
take values over boolean, integer, real or even complex 
domains (i.e., lists, arrays and trees) and not only boolean 
values as in Feature-Oriented Domain Analysis (FODA) 
models [27]. On the other hand, constraints in CP can be 
boolean, arithmetic, symbolic and reified, and not only 
boolean as in FODA models. Besides, PL models expressed 
as constraint programs can be directly executed and analyzed 
by an off-the-shelf solver. This latest property avoids 

problems related to loss of information and misinterpretation 
when de PL model is translated from its original formalism 
to an executable language. The loss of information can be of 
two types: loss of structural information and loss of semantic 
information. In the first case, we do not have the possibility 
of identify anomalies related to the structure, because we 
lose the structural properties of the model. In the second 
case, we lose information about the semantic of the model, 
i.e., we modified the number of products that can be derived 
from the PL model or even the ability of the PL model to 
derivate products.  

Different kinds of constraint programs can be defined 
depending on the types of variables on which the reasoning 
applies [9]; each can be solved with a specific kind of solver: 

 Boolean e.g. SAT [3,10], BDD [4,11], SMV [2,12],  

 Integer e.g. GNU Prolog [13], CHOCO [5,7,14],  

 Reals e.g. clp(R) [15], 

 or even trees and lists, e.g. Prolog-III [16].  
Thus, a FODA model can be represented as a boolean 

constraint program through a series of boolean variables, 
where each variable corresponds to a feature [4, 7]. A 
configuration is generated using SAT solver, as a series of 
values for these variables. However, our bibliography review 
showed that only a part of CP capabilities has been exploited 
so far. In particular, only few approaches have dealt with 
integer CP (or finite domain CP). Another observation is that 
most existing approaches consist in transforming existing PL 
models into CP. We believe that this approach hinders the 
full exploitation of the versatility of CP. The idea in this 
paper is to explore the expressiveness of constraint 
programming to specify product line models and to support 
its automation and analysis. Our goal is twofold: (i) at the 
domain engineering level, to widen the power of expression 
of PL specifications and support domain level PL analysis, 
and (ii) at the application engineering level, to provide new 
analysis features.  

Our research strategy to achieve this was the following: 
first, we explored the power of expression of integer CP by 
specifying a simple but realistic PL. This allowed us both to 
evaluate the feasibility of the approach, but also to explore 
the analysis capability offered by constraint solvers 
supporting the chosen integer CP language. The approach 
was then discussed with PL experts of companies like ADN, 
Renault, Stago and Baxter. Besides, we developed a series of 
transformation strategies to specify FODA and OVM PL 
models using integer CP. Last, we explored an industrial 
case study to evaluate our approach. 



Our main working hypothesis in this work was to choose 
CP that can be handled by a solver. In this respect, Object 
Constraint Language (OCL) was not considered as a relevant 
language in our experiments, even though OCL could be 
used to specify PL constraints. The reason of this decision is 
than even if OCL is a well known language to represent 
constraints, OCL rules are executed by an interpreter and not 
by a solver, loosing, in the way, some reasoning capabilities 
important in the domain of product lines (i.e., to know if a 
product line model allows generating at least one product, or 
to know the number of valid products represented in the 
product line model). 

II. WORKING EXAMPLE 

Consider the hypothetical Movement Control System 
(MCS) of a car (Fig.1). The purpose of such a system is to 
assist drivers to park, help them detect obstacles and while 
running, control their own speed and trajectory as well as the 
safety distance from other vehicles. Movement control is 
performed mainly through sensors that capture position and 
speed. A simple scenario is that drivers command actuators, 
which activate sensors. Sensors can then return feedback to 
drivers. Feedback can be visual, audio or by vibration. The 
coordination of information flow is ensured by a processor, 
which is characterized by its internal memory. Sensors and 
actuators can incorporate an auto-test functionality that 
checks the components functioning. Actuators auto-test 
checks the functioning and the memory, while sensors auto-
test checks the functioning, the consistency and the response 
time. 

 

Figure 1.  Overview of a movement control system 

PL elements are listed below; they constitute the problem 
variables in which the domain indicates the allowed number 
of occurrences: 

- Position Sensor: (0..3) 
- Distance Sensor: (0..4) 
- Speed Sensor: (0,1) 
- Actuator: (0..11) 
- Processors: (0..4) 
- Internal Memory: (4, 8, 16, 32) 
- Visual feedback, Audio feedback, Vibration 

feedback: (0,1) 
 
The VMC PL can be specified by these constraints:  
 
C1. A VMC system includes at least a sensor, an actuator 

and a processor 
C2. A VMC should contain at least one and at most two 

kinds of feedback  (visual, audio, vibration) 
C3. A VMC should contain an actuator for each instance 

of device in the following list: position sensors, front vehicle 

speed sensor, distance sensor, visual feedback, audio 
feedback, vibration feedback 

C4. Sensor functionality check should be integrated to 
the VMC if it contains at least one kind of sensor (position, 
distance or front vehicle speed) 

C5. Actuator functionality check should be integrated to 
the VMC if it contains at least one  actuator 

C6. When a sensor consistency check is included in a 
configuration, then sensor response time check must be 
included too 

C7. The memory should be doubled each time a 
processor is added: the pair (processor, internal memory) can 
have these values (1,4) or (2,8) or (3,16) or (4,32) 

C8. The number of processors should be proportional to 
the number of sensors: one sensor needs one processor; 2 
sensors need 2 processors; 3, 4 or 5 sensors need 3 
processors, more than 5 sensors need 4 processors 

C9. When a speed sensor is included in a configuration, 
then vibration feedback must be excluded and conversely 

C10. There should be at least one processor per kind of 
sensor or feedback device 

III. SPECIFYING AND ANALYZING PL WITH FINITE 

DOMAIN CONSTRAINT PROGRAMMING 

We define a constraint based language (CL) that uses CP 
constructs and operators in order to model product lines. We 
introduce it in the first sub-section. Then, in the second sub-
section, we illustrate its use through the working example. In 
the last sub-section, we show how to perform analysis at 
both the domain level and the application level. 

A. The Constraint Language 

Meta Model General Description. The core construct of 
the Constraint Language (CL) is Constraints, that are applied 
to Variables and Values and defined by Operators (cf. 
Figure 2.). A variable has a domain, and a value in a certain 
moment. The variable‟s domain in the CL can be either 
boolean, integer, intervals, enumeration or string. 
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Figure 2.  Constraint Language meta-model. 



Operators are of two types: operators used to define 
constraints (Constraint Operators) and operators used to 
solve constraints (Resolution Operators).  

Constraint operators can be boolean, arithmetic or 
symbolic (which are applied on a set of variables at a time). 
In the following sub-sections, we explain how these 
operators are utilized to define PLs.  

Resolution operators are used to solve constraints defined 
above. This allows performing various analysis operations 
that we detail in subsection C. 

Constraints may be simple, but also reified. A reified 
constraint is a constraint that is unified to a variable, being 
itself part of another constraint. Reified constraints make it 
possible to reason on the issue of a constraint (more detail 
and examples of use are done in the following sub-sections). 

Defining PL elements. Modeling PL using the CL 
consists in specifying constraints on PL elements that are 
expressed as variables. Indicating that PL elements can be 
either included or excluded can very simply be done by 
defining a [0..1] domain to the variables, where the 1 value 
would mean that the element is included in the configuration, 
and the 0 value that it is not. 

 elements E1..Ek are  boolean elements: 
 domain([E1..Ek], 0, 1) 
In the VMC example, an audio feedback is a boolean 

element: domain([Visual], 0, 1) 
Also, it may be necessary to reason on the number of 

times a PL element can be repeated in a product [17] (e.g. a 
toaster can contain one or more slice slots), or to deal with 
elements that have enumerated or integer values (such as 
performance, quantity or capacity).  

This can be specified with a variable E with a finite 

domain [n..m] (m being for instance the maximum number 
of occurrences of E, or its maximum value). 

 elements E1..Ek are integer elements: 
domain([E1..Ek], n, m) 

 elements E1..Ek are enumeration elements: 
domain([E1..Ek],[value_1,…, value_n]) 

In the VMC example, actuators are represented by an 
integer variable: domain([Actuator], 0, 11) and 
internal memory by an enumerated variable: 
 domain([InternalMemory], [4, 8, 16, 32]) 

 
The Basis of PL Modeling. Example of traditional PL 

elements relationships can be then specified on the [0..1] 
domain as follows: 

 Two elements E1 and E2 can only be either both 

present or both absent of a configuration: E2 = E1 

 A configuration can contain an element E2 only if it 

also contains E1: E2 <= E1 

 The elements E1 and E2 cannot be simultaneously 

included in the same configuration: E2 + E2 <= 1; 

for instance, in the VMC example, Vibration and 

SpeedSensor are mutually exclusive: 
SpeedSensor + Vibration <= 1  

 A configuration can contain a number of at least Min 

(or at most Max) elements within a group of E1..Ek 

elements: Min <= Σ1..k Ei and Σ1..k Ei <= 

Max 

 If E3 is included in a configuration then either E1 or 

E2 is included; otherwise all are excluded: (E3 ⇒ 

E1 + E2 = 1) ˄ (⌐E3 ⇒ E1 + E2 = 0) 

For instance, in the VMC example, ConsistencyCheck 

implies the inclusion of ResponseTimeCheck. This can 

be specified by the constraint:  
ConsistencyCheck ⇒ ResponseTimeCheck >= 1 

 Given two sets of elements S1 = {E1, E2} and S2 

= {E3, E4}, a configuration should contain more 

elements from the set S1 than from the set S2: E1 

+ E2 < E3 + E4. This constraint can, of course, 

be extended to larger sets. 

 Either E1 is included in a configuration, or both E2 

and E3: 2 * E1 + E2 + E3 =2 

 
Reasoning about Integer Variables. Two simple kinds 

of constraints can be specified on this type of variables:  

 E1 > a: to indicate that element E1‟s value shall be 

included at least a (i.e. it is an element that has at 

least a occurrences in a configuration), and  

 E1 = a: to specify that E1 shall have a constant 

value in any configuration (i.e. the number of times 
an element can be included in a configuration is 
fixed).  

More complex constraints can be specified over Integer 
variables, for instance: 

 The elements E1 and E2 are mutually excluded, this 
is, both can be excluded or if one is included the 
other can be excluded in the same configuration: E1 
* E2 = 0 

 A configuration should include more occurrences of 
an element than of another: E1 > E2  

 A configuration should include as occurrences of an 
element E1 as of two other elements (E2 and E3) 

together: E1 =  E2 + E3; this is for example 

useful to specify the C3 constraint of the VMC 

example: Actuator = PositionSensor + 

DistanceSensor + SpeedSensor + Visual 

+ Audio + Vibration 

If in the example, n additional sensors are needed for 

other purposes, then the   constraint would be: Actuator + 
n= PositionSensor + DistanceSensor + 

SpeedSensor 

 A configuration should include more occurrences of 
a pair of elements (E3, E4) than of another pair of 

elements (E1, E2) together: E1 + E2 < E3 + 

E4. This is for instance useful to specify that the 

number of consistency check plus the number of 
response time auto test sensors should be superior to 
the number of memory check plus the number of 
functionality checks in actuators. 



 The number of occurrences of E1 should be the half 

of the number of occurrences of E2: 2 * E1 =E2. 

This can be used to specify that there should be two 
functionality checks auto tests per speed sensor. 

 
Symbolic Constraints. CP over finite domains supports 

the specification and analysis of symbolic constraints, i.e. 
constraints that are checked on collections of variables. Here 
are some symbolic constraints: 

 alldifferent([E1, .., Ek]): specifies that in 

any configuration the value of each of the E1..Ek 

elements should be different pair wise. 

 atmost(n, [E1..Ek], a): specifies that at most 

n of the E...Ek elements are equal to a. 

 atleast(n, [E1..Ek], a): specifies that at 

least n of the E..Ek elements are equal to a. 

 exactly(n, [E1..Ek], a): specifies that 

exactly n of the E..Ek elements are equal to a. 

 relation([E1..Ek],{[a1..ak]}): constraints 

the tuple of elements E1...Ek to be equal to at least 

one tuple in the collection of tuples [a1..ak]. This 

allows to specify extensively a predetermined 
collection of compatible values for [0..n] 

elements. 
In the VMC example, symbolic constraints can be used 

for instance to specify predefined combinations of the 
number of processors and the quantity of internal memory in 
configurations (see constraint C7): relation ([[1, 

4],[2, 8],[3, 16],[4, 32]], [Processor, 

InternalMemory]) 

 
Reified constraints. In CP, the reification of a 

constraintC into a variable C of the [0..1] domain is 

achieved by a constraint: 

C ⇔ contraintC 

that establishes a correspondence between a constraint 
constraintC and C as follows: constraintC shall be 

verified in a configuration iff  C is true (thus  the other way 

round C is true iff constraintC is verified). 

For instance, some constraints should be verified in a 
configuration only if some elements are included / excluded 
from this configuration:  

 E1 = 1 ⇒ C: whenever E1 is included, the 

constraint constraintC reified with the C variable 

should be satisfied. 

 E1 = 0 ⇒ C: whenever E1 is excluded, the 

constraint constraintC reified with C should be 

satisfied. Of course, these reification constraints 
could also be directly specified as: 

E1 = 1 ⇒ constraintC ˄ 

E1 = 0 ⇒ constraintC. 

In the VMC example, it would for instance be possible to 
generate PL models from the VMC PL model to specify sub 
families of VMC. One interesting such kind of sub family is 
this in which a position actuator is associated with each 
position sensor. Another aspect of this sub-family is that it 
can be managed only as soon as there is a central processor 
with a 1024 Ko internal memory. The constraint can be 
reified as follows: 

(Processor=1)˄(InternalMemory = 1024) ⇒  B 

with    

B ⇔ (PositionSensor = PositionActuator) 

 
Likewise, reified constraints can be used to specify 

preferences. In the VMC example, we may prefer, for cost 
reasons, to not use a speed sensor when we have a distance 
sensor. This preference can be expressed as follows: 

DistanceSensor > 0 ⇒ minimize(SpeedSensor) 

B. Example Illustration 

Developing a constraint program that specifies a product 
line model and resolving it is quite straightforward. For 
example, the VMC product line presented in section 2 can be 
specified, by using the rules presented in subsection A, with 
the following program.  

 

PositionSensor ∈ {0, 3} ˄ DistanceSensor ∈ 

{0, 4} ˄ SpeedSensor ∈ {0, 1} ˄ Actuator ∈ 

{0, 11} ˄ Processor ∈ {0, 4} ˄ [Visual, 

Audio, Vibration] ∈ {0, 1} ˄ 

InternalMemory ∈ {4, 8, 16, 32} ˄ 
[ActuatorFunctionalityCheck, 

ActuatorMemoryCheck, 

SensorFunctionalityCheck, 

SensorConsistencyCheck, 

SensorResponseTimeCheck] ∈ {0, 1} ˄  
Sensor = PositionSensor + DistanceSensor + 

SpeedSensor ˄ 

Sensor ≥ 1 ˄ 

Actuator ≥ 1 ˄ 

Processor ≥ 1 ˄ 

1 ≤ Visual + Audio + Vibration ≤ 2 ˄ 

Actuator = Visual + Audio + Vibration ˄ 

Sensor ≥ 1 ⇒ SensorFunctionalityCheck = 1˄ 

Actuator ≥ 1 ⇒ ActuatorFunctionalityCheck 

= 1 ˄ 

SensorConsistencyCheck = 1 ⇒ 

SensorResponseTimeCheck = 1 ˄ 

relation([[1,4],[2,8],[3,16],[4,32]], 

[Processor, InternalMemory]) ˄ 

relation([[1,1],[2,2],[3,3],[4,3],[5,3],[6

,4],[7,4],[8,4]], [Sensor, Processor]) ˄ 

SpeedSensor + Vibration ≤ 1 ˄ 

Processor ≥ SpeedSensor +  



min(PositionSensor,1)+ min(DistanceSensor,  

1)+ Visual + Audio + Vibration. 

 
Figure 3 illustrates the constraints set specifying the 

VMC example and their interdependencies. Any constraint 
solver can be then used to solve the program. For instance, 
we use GNU Prolog to analyze the VMC system. For 
instance, we obtain a list of 1044 products that were 
generated in 16 milliseconds (CPU time). 

Operations allowing configuration and analysis are 
presented in the following sub-section. 

 

 
Figure 3.  The VMC product line modeled as a network, where nodes 

represent constraints and edges indicate that concerned constraints share at 

least one variable 

C. PL Analysis 

As shown in the Figure 4. PL model and configuration 
requirements are expressed into constraints to allow analysis. 
Analysis can be done at the domain level to reason on the PL 
itself, as well as the application level, mainly by generating 
either partial or full configuration (which corresponds to a 
full valuation of variables). 
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Figure 4.  Product line analysis using the Constraint Language. 

Domain Level Analysis. Domain analysis level is 
performed by specifying and resolving some constraints that 
the PL must respect. These “meta constraints” can be used 
for verification purposes, or to optimize the PL itself.  

Examples of PL verification are: 

 structural verification (e.g. two different elements 
cannot have the same name), 

 expressiveness verification criteria (e.g. the PL must 
not be void or false) 

 error-free verification (e.g. the PL must not include 
dead elements) 

 consistency verification (e.g. the PL must not 
include false optional elements) 

 the calculus of PL core elements, variant elements, 
PL homogeneity and PL commonality. 

Examples of PL optimization are the maximization of 
reuse (e.g. any generated configuration must include at least 
k elements), and the minimization of components cost (e.g. 
the maximum cost of any generated configuration should not 
exceed a certain value). 

 
Application Level Analysis. At this level, we consider a 

PL modeled using the constraint language. To perform 
analysis we make use of CL resolution operators. Analysis 
operations as listed in [4] can be assumed as follows (with 
var the list of the PC variables): 

 One product: labeling(var) allows to calculate 
one valid solution for the modeled problem. Then, 
alternative solutions can be calculated successively. 

 All products:  
find_all(var, fd_labeling(var),L) allows 

enumerating all problem solutions in the list L. 

 Number of products: this operation can be performed 
while counting the result list length of the 
find_all() operator, which literally gives 
find_all ((X,Y), labeling([X,Y]),L), 

length(L,N). N is the number of possible 

solutions. 

 Optimization: maximize(labeling(Vars),X) 

allows to find a solution such that the objective 
function X is maximized. Conversely, 

minimize(labeling(Vars),X) allows to find a 

solution that minimize the objective function X. This 

function can be a constraint on for example the cost 
or the benefit of PL devices. Optimization operation 
can be used also domain level constraints (see 
above). 

 Valid product: a valid product is an assignment for 
all the variables of the PC problem that does not 
violate its constraints. Then, a product is valid if his 
resolution, together with the PL constraints, does not 
arises errors. 

 Valid partial configuration: likewise, a partial 
configuration is an assignment for some PC problem 
variables that does not violate its constraints. Then, a 
partial configuration is valid if his resolution, 
together with the PL constraints, gives a valid total 
configuration. 

 Products which contain a given set of features: pre-
selecting some PL features means, in terms of PC, 
that a True value is assigned to the corresponding 
variables. Calculating products that contains a given 
set of features boils down to resolve the PC problem 



in which a True value is assigned to the desired 
features.  

 Multistep configuration: as discussed above, 
decisions over steps can be programmed using 
reified constraints. 

 Dependency analysis having a partial configuration: 
this operation returns a new configuration with the 
features that should be selected and removed as a 
result the propagation of the PL constraints. In terms 
of CP, dependency analysis is performed by 
resolving the PL problem augmented with the 
assignment of the partial configuration. 

 

IV. REPRESENTATION OF PRODUCT LINE MODELS AS 

CONSTRAINT PROGRAMS 

CP is a powerful paradigm that can deal with numerous 
variability notations. 

Table 1 illustrates transformations patterns of some 
common constraints to all PLM representations. For reasons 
of succinctness, others specific constraints are not introduced 
in this paper. 

Another use of constraints on the [0..n] domain in PL 
is to apply them to element attributes, as proposed in [18] 
with attributes associated to [0..1] elements. In [19], we 
have demonstrated how to specify constraints on attributes to 
reason on goal based product configuration, to guide for 
example a cost/benefit analysis of products during their 
configuration. 

Besides, reified constraints can be used in staged 
configuration. In [20], Czarnecki et al. define staged 
configuration through specialization steps. A specialization 
takes a PL model as input, and produces another PL model, 
where certain configuration choices are eliminated. The 
fundamental of staged configuration is then to enable extra 
constraints that shall be associated to a configuration model, 
which shall itself be considered as a PL model. Staged 
configuration can be found useful when not all constraints 
shall be verified at once, but enabled in an ordered fashion. 
Reified constraints allow defining such constraints that are 
enabled when some conditions are satisfied in a given step. 

The constraints of a PL model that shall only be verified 
at a stage of configuration identified must be reified. 
Identifying stages of configuration can be done either using 
FD variable that represents time (the version number of the 
configuration) [21], or it can be conditioned by the inclusion 
/ exclusion of some elements in the configuration. 

Reified constraint can also be used to specify constraint 
over decision points, as in [22] as follows. Assuming that a 
decision point D is specified using constrains C1..Cn. A 

constraint C on D shall simply be expressed as: 

C ⇒ D, where  D ⇔ C1 ˄ ... ˄ Cn 

to indicate that whenever condition C is met (e.g. an 
element is included in a configuration), the constraints 
associated with decision point D shall be satisfied. 

TABLE I.  PATTERNS FOR TRANSFORMING PL MODELS, 
REPRESENTED BY MEANS OF DIFFERENT FORMALISMS, INTO CP 

Names and 

Semantics 

Representations CP 

Representations 

Mandatory 

If the father 

element (V1) is 

selected, the 

child element 

(V2) must be 

selected as well 

and vice versa. 

FODA representation 

 
Class representation 

V1 V2

1 1..1

  

OVM representation 

 
 

Use case 

representation

 

V1 > 0 ⇔ V2 > 0 

 

(i.e., if V1>0 

then V2>0 and 

vice versa) 

Optional 

If the father 

element (V1) is 

selected, the 

child element 

(V2) can but 

needs not be 

selected. 

Otherwise, if 

V2 is selected, 

the father 

element (V1) 

must as well be 

selected. 

FODA representation 

 
OVM representation 

 
 

Use Case representation 

[32] 

 

 

 
 

Class representation 

[30,31] 
V1 V2

1 0..1  
 

Ontology representation 

[33] 

 

V2 ≤ V1 

 

(i.e., if V1 =1 

then V2 =1 and 

if V; if V2 =1 

then V1 =1) 

Requires 

If element V1 is 

selected, the 

required 

element V2 has 

to be selected 

as well, but not 

vice-versa, that 

is, V2 can be 

selected when 

V1 is not 

Feature representation 

 
 

Ontology representation 

 
 

OVM representation 

 

V1 > 0 ⇒ V2 > 0 
 

(i.e., if V1 = 

1 then V2 ≥ 1; 

if V1 = 0 then 

V2 is not 
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V1 V2 
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V1 V2 

V2 V1 
Extends 

V2 V1 

V2 V1 
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V2 
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V1 

V1 V2 

V2 V1 

V1 V2 



selected.  

 

 
 

Use Case representation 

 

 
Exclusion 
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both elements 

(V1, V2) cannot 
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one product 

configuration.  

Feature representation 

 
Ontology representation 

 
 

OVM representation 

    

 

 

V1 * V2 = 0  

Or if V1 and V2 are 

boolean variables: 
V1 + V2 ≤ 1 

 

(if V1 > 0 then 

V2 = 0; if V2 > 

0 then V1 = 0 

and if V1 = 0 

then V2 ≥ 0 and 

vice versa) 

Group 

cardinality 

Cardinality 

determines how 

many variants 

(with the same 

father) may be 

chosen, at least 

Min and at most 

Max of the 

group. Besides, 

if one of the 

children is 

selected, the 

father element 

must be 

selected as 

well. 

Feature representation: 

 
OVM representation: 

 

V1 ⇒ VP ˄ 
V2 ⇒ VP ˄ ... 

Vi ⇒ VP ˄ 

VP ≥ 1 ⇒ 
V1+V2+...+Vi 

≥ Min ˄ 

VP ≥ 1 ⇒ 
V1+V2+...+Vi 

≤ Max 

 

i.e., (Min=0, 

Max=2 and PV=5) 

then zero, one 

or two elements 

among 

{V1,V2,…,Vi} 

can be chosen. 

 
Note that we do not deal with individual cardinalities and 

that when we talk about cardinality-based feature models we 
are considering only group cardinalities. Cloned features [17] 
and multi-valued variables are partially treated by Karataş et 
al. [28]. So, questions like: what is the semantics of cross-
tree constraints in presence of feature cardinalities?  What 
does it mean that A requires B, if B has a parent with more 
than singleton cardinality ? Is the semantics existential ? Is it 
universal ? Anything in between ?   What does F1.A = F2.B 
+ F3.C if any of the involved features is in a cloned sub-tree? 
Are open issues and are proposed as future work. 

V. EVALUATION 

We evaluate the effectiveness of our approach by testing 
its implementation and application feasibility. 

 
Tool implementation. We developed an interactive 

environment composed of three tools: VMWare [23], 
VariaMos [26] and GNU Prolog[13]. VMWare offers a 
graphical editor that supports drawing, loading and saving 
cardinality-based feature models and export them as XMI 
files. A snapshot screen of our too VMWare‟s interface is 
shown in Figure 5. VariaMos is an Eclipse plug-in that 
allows constraint programs management (e.g., creating, 
editing and saving), verification (detect void models, false 
product line models, dead variables, false optional variables, 
not attainable domains and redundant constraints), analysis 
(supporting all analysis functions documented by Benavides 
et al. in their latest literature review [25], see section 3.3 of 
this paper) and specification of requirements (e.g., configure 
a product, define a filter or a partial configuration and 
specify extra constraints or particular requirements). GNU 
Prolog is our CP solver. 

Feasibility study with a real case application. One 
particular question that can be raised about the new kinds of 
constraints that have been identified in this paper is “are they 
useful?” Although only long term experience shall provide a 
definitive answer to this question, one might be interested in 
looking for special constraints that could be specified in a 
real case. 
To do so, we have used our CP over FD approach to specify 
constraints on a family of blood analysis automatons [19] in 
the context of a cooperation with the partner industry 
STAGO.  
 

 
Figure 5.  Snapshot of VMWare tool with feature representation of the 

STAGO‟s product line model. 

Using FD constraints allowed us to specify the same 
constraints as the one that we had identified to reason about 
cost and revenue of each feature. To do so, we associated 
[0..n] attributes to each features to specify costs and benefits. 
We had to define a fix value for n – we chose to use the same 
maximum cost and revenue for all features for the purpose of 
the study. 

VP 

Vi V2 … V1 

Min..Max 

V1 V2 
Excludes 

V1 V2 

V1 

<<includes>> 

V2 

V1 
<<includes>> 

V2 



For example, we specified constraints on the minimal 
number of measurement wells depending on the required 
tests and the required cadence for these tests. 

Chronometric.NumberOfWells + 

Colorimetric.NumberOfWells + 

Immunologic.NumberOfWells ≥ 

max(LaunchTest.TestCadence) * 

max(LaunchTest.TestDuration) 

We could also specify that the initially optional function 

„Agitate‟ must be implemented whenever one of the tests 

TCA, ATIII or PC are not included. 

(LaunchTest.TestType ≠ TCA)  

(LaunchTest.TestType ≠ ATIII)  

(LaunchTest.TestType ≠ PC) ⇒ Agitate = 1 

Looking at our list of FD specific constraints, we 

identified the following constraints which could not be 

specified with {true, false} features, but can be specified 

with our integer constraint notation: 

 constraints on both [0..n] features and feature 
attributes. For example, we could play with the 
number of chronometric, colorimetric and 
immunologic measures and specify a constraint on 
the number of their occurrence with regard to the 
cadence and duration of the test.  

Chronometric + Colorimetric + 

Immunologic ≥ LauchTest.TestCadence * 

LauchTest.TestDuration 

 symbolic constraints such as: 
Atmost(1,[Agitate,Mix,Incubate],2]) to 

specify that each activity in a methodology can be 
repeated at most twice. 

 Another example of use of symbolic constraints was 
to specify possible combinations of value of the 
cadence, duration, and kind of determination for 
different kinds of test types: 

Relation ([LauchTest.TestType, 

LauchTest.TestDuration, 

LauchTest.TestCadence, determination], 

[[TP, 2, 14, simple], [TP, 2, 14, 

double],[TCA, 2, 14, simple],[TT, 3, 

2, double],[Fib, 10, 5, 

double],[ATIII, 15, 3, double],[VwF, 

13, 8, double],[PC, 2, 6, 

simple],[DDi, 6, 8, simple]]) 

 Last, we were able to specify reified constraints such 
as: 

LaunchTest.TestType = TCA ⇔ C 

C ⇒ Chronometric = 1 ˄ 
Chronometric.Speed = normal 

which enforces the use chronometric measurement 

technique when TCA test is demanded. It specifies 

also the required speed for this test.  

We also used feature attributes to support cost/benefit 

analysis on measurement techniques. The following goals 

could for instance be specified: 

Min (Chronometric.Cost * 

Chronometric.NumberOfWells + 

Colorimetric.Cost * 

Colorimetric.NumberOfWells + 

Immunologic.Cost * 

Immunologic.NumberOfWells) 

˄ Max (Chronometric.Revenue * 

Chronometric.NumberOfWells + 

Colorimetric.Revenue * 

Colorimetric.NumberOfWells + 

Immunologic.Revenue * 

Immunologic.NumberOfWells) 

Figure 6 shows the STAGO product line model specified 
as a constraint program and the configuration interface of our 
tool VariaMos. Note that some constraints like the symbolic 
constraint (1,[Agitate,Mix,Incubate],2]) discussed 

before, can be specified not as a constraint of the product line 
but as a particular constraint on configuration stage. Note 
also that the value of each feature can be specified in the 
configuration interface for a particular product (assigning a 
value to all features) or for a collection of products (assign a 
value to some features) where the assignation of the value 0 
to a feature means that the feature must not belongs to 
configured product(s). 

 

 
Figure 6.  Snapshot of our tool VariaMos. STAGO product line model 

representation as a constraint proram and its configuration interface. 

Our observations are also the following ones: 

 Incremental development and maintenance of PL 
models is made possible as long as models are 
modified by adding/removing constraints. 

 We use GNU-Prolog as solver. It computes very 
efficiently a first complete solution w.r.t. the 
selected/excluded features. In practice, this helped us 
in the configuration process as it provided a general 
idea of the product that was being built. 

 GNU-Prolog computation of the next solution was 
effective as it offered an alternative to the 



configurations that had already been explored. 
Iterating over this function allowed to review the 
various solutions one by one – or to identify that the 
variability space was still very open by counting the 
number of remaining configurations that satisfied the 
constraints for the requirements at hand. 

These results are encouraging and confirm that CP over 

FD is well suited to precisely model and efficiently 

configure PL. 

VI. RELATED WORKS 

This paper is not the first to explore the use of constraint 
programming in the context of PL. Some proposals had been 
made to support automatic analysis of feature-based models 
in order to allow retrieving information. The largest number 
of works to automate features analysis is based on 
propositional logic [1] [2] [3] [18]. Batory was the first to 
use SAT solvers to analyze feature models. In these 
constraints, features are boolean variables (either they are 
included or not in a configuration). 

Czarnecki's proposals of staged configuration, features 
cardinalities and feature attributes have created an 
opportunity to move from boolean to integer constraints 
specification. Our approach belongs to this family of 
approaches that relies on integer domain constraints rather 
than on boolean ones. The simple fact of replacing the {true, 
false} domain by [0..1] opens the door to kinds of constraints 
that did not exist in the aforementioned approaches. 

In particular, Benavides's works [4] [18] have shown 
how feature models could be analyzed by specifying integer 
constraints on attributes associated with features. In 
Benavides's approach, features themselves still have a {true, 
false} domain, while our approach allows dealing with [0..n] 
features. 

 White et al. [21] also provide a CP support for multi-step 
configuration over time, while respecting resource 
constraints. We believe reification constraints able to deal 
with progressive configuration either by providing 
successive complete products as in [21] or successive partial 
configurations as in [20]. 

Besides, aforementioned approaches consider only single 
monolithic feature models. As shown in section 4, our 
approach provides the ability to deal with multiple models 
that are specified using different variability languages. 

Furthermore, our approach explores more FD Constraint 
Programming capabilities that have not been exploited so far. 
It provides numerous types of constraints (e.g. symbolic and 
reified constraints) that have not been proposed by any of the 
approaches referenced before. 

VII. CONCLUSION 

CP has proved a powerful paradigm for solving 
combinatorial problems arising in many domains, such as 
scheduling, planning, vehicle routing, configuration, 
networks or bio-informatics. Our proposal is to specify 
Product Lines as a finite domain constraint program i.e. not 
just a boolean program that implements features selection in 
a FODA-like models, but a series of integer constraints that 

apply to anything that varies and has configuration 
constraints. 

   We believe our approach is original as (a) it is a first 
attempt to integrate various variability models through a 
unique representation, (b) it supports direct reasoning on 
product line models (c) it supports the specification of 
complex configuration requirements. 

Nonetheless, some further work is required for the multi-
valuated PL elements, on which constraints may need some 
adjustments. Besides, the approach can be extended to deal 
with reals, which can for example allow performing some 
probabilistic reasoning (some industries like Renault have 
expressed the need to plan pieces logistics). We have 
explored constraint programming on finite domains, but 
many other domains could be relevant: Reals, Intervals, 
Trees, Lists, and Sets. Constraint Programming is versatile in 
that it adapts quite well to different applications. We have 
little doubt that the systematic exploration of these domains 
will generate new knowledge about product lines 
engineering. 
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