
Constraints: the Core of Product Line Engineering

Camille Salinesi1, Raul Mazo1,2, Olfa Djebbi1, Daniel Diaz1 , Alberto Lora-Michiels3
1 CRI, Panthéon Sorbonne University, Paris, France

2 Ingeniería de Sistemas, University of Antioquia, Medellín, Colombia
3 Baxter International Inc, Lessines-Belgium

{camille, daniel.diaz}@univ-paris1.fr, {raulmazo, albertoloram}@gmail.com, olfa.djebbi@malix.univ-paris1.fr

Abstract— Product line engineering is a reuse-driven

development paradigm, founded on the management of

product line variability; it has been applied successfully in

information systems engineering and other domains. A

common way to represent variability is with variability models

that describe the artifacts, their relations and the valid

artifacts combinations of a product line. Constraint

programming, and in particular boolean constraint

programming, has been used so far to support analysis of

variability models such as Feature-Oriented Domain Analysis

(FODA) and the like. This paper goes a step further by using

constraint programming to specify product lines. The focus on

variability, variation points or dependencies is switched to the

concept of constraints that apply to variables. The paper shows

that the concept of constraint is more general than the one of

dependency; many constraints that that could be controlled

cannot be specified with dependencies of existing product line

modeling languages. The approach was implemented in a

prototype tool, and its scalability explored with industry case

studies. These experiments show that constraint programming

encompasses existing product line modeling languages such as

FODA or OVM (Orthogonal Variability Model) and open way

to new possibilities such as reasoning simultaneously with

different models during domain or application engineering.

Keywords- constraints, product line specification, product

line analysis, constraint programming

I. INTRODUCTION

Propositional logic has been used to deal with Product
Line Engineering (PLE) [1, 2, 3, 5]. More recent works [4, 6,
28, 29] show the interest of the international community of
PLE to represent and analyze Product Line (PL) models by
using constraint programming. Indeed, an analogy can easily
be drawn between features based PL models and Constraint
Programming (CP) because both can be defined by a
collection of variables and a collection of constraints that
these variables should satisfy. In contrast, specify a product
line as a constraint program instead of a feature model has
two important advantages: the expressiveness and the
directly automation. On the one hand, variables in CP can
take values over boolean, integer, real or even complex
domains (i.e., lists, arrays and trees) and not only boolean
values as in Feature-Oriented Domain Analysis (FODA)
models [27]. On the other hand, constraints in CP can be
boolean, arithmetic, symbolic and reified, and not only
boolean as in FODA models. Besides, PL models expressed
as constraint programs can be directly executed and analyzed
by an off-the-shelf solver. This latest property avoids

problems related to loss of information and misinterpretation
when de PL model is translated from its original formalism
to an executable language. The loss of information can be of
two types: loss of structural information and loss of semantic
information. In the first case, we do not have the possibility
of identify anomalies related to the structure, because we
lose the structural properties of the model. In the second
case, we lose information about the semantic of the model,
i.e., we modified the number of products that can be derived
from the PL model or even the ability of the PL model to
derivate products.

Different kinds of constraint programs can be defined
depending on the types of variables on which the reasoning
applies [9]; each can be solved with a specific kind of solver:

 Boolean e.g. SAT [3,10], BDD [4,11], SMV [2,12],

 Integer e.g. GNU Prolog [13], CHOCO [5,7,14],

 Reals e.g. clp(R) [15],

 or even trees and lists, e.g. Prolog-III [16].
Thus, a FODA model can be represented as a boolean

constraint program through a series of boolean variables,
where each variable corresponds to a feature [4, 7]. A
configuration is generated using SAT solver, as a series of
values for these variables. However, our bibliography review
showed that only a part of CP capabilities has been exploited
so far. In particular, only few approaches have dealt with
integer CP (or finite domain CP). Another observation is that
most existing approaches consist in transforming existing PL
models into CP. We believe that this approach hinders the
full exploitation of the versatility of CP. The idea in this
paper is to explore the expressiveness of constraint
programming to specify product line models and to support
its automation and analysis. Our goal is twofold: (i) at the
domain engineering level, to widen the power of expression
of PL specifications and support domain level PL analysis,
and (ii) at the application engineering level, to provide new
analysis features.

Our research strategy to achieve this was the following:
first, we explored the power of expression of integer CP by
specifying a simple but realistic PL. This allowed us both to
evaluate the feasibility of the approach, but also to explore
the analysis capability offered by constraint solvers
supporting the chosen integer CP language. The approach
was then discussed with PL experts of companies like ADN,
Renault, Stago and Baxter. Besides, we developed a series of
transformation strategies to specify FODA and OVM PL
models using integer CP. Last, we explored an industrial
case study to evaluate our approach.

Our main working hypothesis in this work was to choose
CP that can be handled by a solver. In this respect, Object
Constraint Language (OCL) was not considered as a relevant
language in our experiments, even though OCL could be
used to specify PL constraints. The reason of this decision is
than even if OCL is a well known language to represent
constraints, OCL rules are executed by an interpreter and not
by a solver, loosing, in the way, some reasoning capabilities
important in the domain of product lines (i.e., to know if a
product line model allows generating at least one product, or
to know the number of valid products represented in the
product line model).

II. WORKING EXAMPLE

Consider the hypothetical Movement Control System
(MCS) of a car (Fig.1). The purpose of such a system is to
assist drivers to park, help them detect obstacles and while
running, control their own speed and trajectory as well as the
safety distance from other vehicles. Movement control is
performed mainly through sensors that capture position and
speed. A simple scenario is that drivers command actuators,
which activate sensors. Sensors can then return feedback to
drivers. Feedback can be visual, audio or by vibration. The
coordination of information flow is ensured by a processor,
which is characterized by its internal memory. Sensors and
actuators can incorporate an auto-test functionality that
checks the components functioning. Actuators auto-test
checks the functioning and the memory, while sensors auto-
test checks the functioning, the consistency and the response
time.

Figure 1. Overview of a movement control system

PL elements are listed below; they constitute the problem
variables in which the domain indicates the allowed number
of occurrences:

- Position Sensor: (0..3)
- Distance Sensor: (0..4)
- Speed Sensor: (0,1)
- Actuator: (0..11)
- Processors: (0..4)
- Internal Memory: (4, 8, 16, 32)
- Visual feedback, Audio feedback, Vibration

feedback: (0,1)

The VMC PL can be specified by these constraints:

C1. A VMC system includes at least a sensor, an actuator

and a processor
C2. A VMC should contain at least one and at most two

kinds of feedback (visual, audio, vibration)
C3. A VMC should contain an actuator for each instance

of device in the following list: position sensors, front vehicle

speed sensor, distance sensor, visual feedback, audio
feedback, vibration feedback

C4. Sensor functionality check should be integrated to
the VMC if it contains at least one kind of sensor (position,
distance or front vehicle speed)

C5. Actuator functionality check should be integrated to
the VMC if it contains at least one actuator

C6. When a sensor consistency check is included in a
configuration, then sensor response time check must be
included too

C7. The memory should be doubled each time a
processor is added: the pair (processor, internal memory) can
have these values (1,4) or (2,8) or (3,16) or (4,32)

C8. The number of processors should be proportional to
the number of sensors: one sensor needs one processor; 2
sensors need 2 processors; 3, 4 or 5 sensors need 3
processors, more than 5 sensors need 4 processors

C9. When a speed sensor is included in a configuration,
then vibration feedback must be excluded and conversely

C10. There should be at least one processor per kind of
sensor or feedback device

III. SPECIFYING AND ANALYZING PL WITH FINITE

DOMAIN CONSTRAINT PROGRAMMING

We define a constraint based language (CL) that uses CP
constructs and operators in order to model product lines. We
introduce it in the first sub-section. Then, in the second sub-
section, we illustrate its use through the working example. In
the last sub-section, we show how to perform analysis at
both the domain level and the application level.

A. The Constraint Language

Meta Model General Description. The core construct of
the Constraint Language (CL) is Constraints, that are applied
to Variables and Values and defined by Operators (cf.
Figure 2.). A variable has a domain, and a value in a certain
moment. The variable‟s domain in the CL can be either
boolean, integer, intervals, enumeration or string.

Boolean operatorSymbolic operator

Difference

Inferior

Multiplication

Division

Inferior
or equal

Superior

Superior
or equal

NOT

Implication

Equivalence

OR

XOR

AND

element (…)

element_var (…)

all_different (…)

at_most (…)

at_least (…)

exactly (…)

relation (…)

labeling (…)

find_all (…)

maximize (…)

minimize (…) Operator

Resolution
operator

Constraint
operator

Arithmetic Operator

Equality

Inequality

Addition

Subtraction

Constraint

Domain

1..*

Value intervals

Integer

Enumeration

Value

Domain with
global order

Domain without
global order

*
1..*

Belongs to >

Is va
lu

a
ted

 b
y >

1

Boolean

Order

1..*

String

Variable

valuated: boolean

Reified constraint

1..*

1..*

1..*

Is d
efin

ed
 b

y >

Applies to >

1..* 0..*

0..*

A
p

p
lies to

 > Is unified with >

1

1 Valuation

1

0..*

a
tt

ri
b

u
te

 >

Figure 2. Constraint Language meta-model.

Operators are of two types: operators used to define
constraints (Constraint Operators) and operators used to
solve constraints (Resolution Operators).

Constraint operators can be boolean, arithmetic or
symbolic (which are applied on a set of variables at a time).
In the following sub-sections, we explain how these
operators are utilized to define PLs.

Resolution operators are used to solve constraints defined
above. This allows performing various analysis operations
that we detail in subsection C.

Constraints may be simple, but also reified. A reified
constraint is a constraint that is unified to a variable, being
itself part of another constraint. Reified constraints make it
possible to reason on the issue of a constraint (more detail
and examples of use are done in the following sub-sections).

Defining PL elements. Modeling PL using the CL
consists in specifying constraints on PL elements that are
expressed as variables. Indicating that PL elements can be
either included or excluded can very simply be done by
defining a [0..1] domain to the variables, where the 1 value
would mean that the element is included in the configuration,
and the 0 value that it is not.

 elements E1..Ek are boolean elements:
 domain([E1..Ek], 0, 1)
In the VMC example, an audio feedback is a boolean

element: domain([Visual], 0, 1)
Also, it may be necessary to reason on the number of

times a PL element can be repeated in a product [17] (e.g. a
toaster can contain one or more slice slots), or to deal with
elements that have enumerated or integer values (such as
performance, quantity or capacity).

This can be specified with a variable E with a finite

domain [n..m] (m being for instance the maximum number
of occurrences of E, or its maximum value).

 elements E1..Ek are integer elements:
domain([E1..Ek], n, m)

 elements E1..Ek are enumeration elements:
domain([E1..Ek],[value_1,…, value_n])

In the VMC example, actuators are represented by an
integer variable: domain([Actuator], 0, 11) and
internal memory by an enumerated variable:
 domain([InternalMemory], [4, 8, 16, 32])

The Basis of PL Modeling. Example of traditional PL

elements relationships can be then specified on the [0..1]
domain as follows:

 Two elements E1 and E2 can only be either both

present or both absent of a configuration: E2 = E1

 A configuration can contain an element E2 only if it

also contains E1: E2 <= E1

 The elements E1 and E2 cannot be simultaneously

included in the same configuration: E2 + E2 <= 1;

for instance, in the VMC example, Vibration and

SpeedSensor are mutually exclusive:
SpeedSensor + Vibration <= 1

 A configuration can contain a number of at least Min

(or at most Max) elements within a group of E1..Ek

elements: Min <= Σ1..k Ei and Σ1..k Ei <=

Max

 If E3 is included in a configuration then either E1 or

E2 is included; otherwise all are excluded: (E3 ⇒

E1 + E2 = 1) ˄ (⌐E3 ⇒ E1 + E2 = 0)

For instance, in the VMC example, ConsistencyCheck

implies the inclusion of ResponseTimeCheck. This can

be specified by the constraint:
ConsistencyCheck ⇒ ResponseTimeCheck >= 1

 Given two sets of elements S1 = {E1, E2} and S2

= {E3, E4}, a configuration should contain more

elements from the set S1 than from the set S2: E1

+ E2 < E3 + E4. This constraint can, of course,

be extended to larger sets.

 Either E1 is included in a configuration, or both E2

and E3: 2 * E1 + E2 + E3 =2

Reasoning about Integer Variables. Two simple kinds

of constraints can be specified on this type of variables:

 E1 > a: to indicate that element E1‟s value shall be

included at least a (i.e. it is an element that has at

least a occurrences in a configuration), and

 E1 = a: to specify that E1 shall have a constant

value in any configuration (i.e. the number of times
an element can be included in a configuration is
fixed).

More complex constraints can be specified over Integer
variables, for instance:

 The elements E1 and E2 are mutually excluded, this
is, both can be excluded or if one is included the
other can be excluded in the same configuration: E1
* E2 = 0

 A configuration should include more occurrences of
an element than of another: E1 > E2

 A configuration should include as occurrences of an
element E1 as of two other elements (E2 and E3)

together: E1 = E2 + E3; this is for example

useful to specify the C3 constraint of the VMC

example: Actuator = PositionSensor +

DistanceSensor + SpeedSensor + Visual

+ Audio + Vibration

If in the example, n additional sensors are needed for

other purposes, then the constraint would be: Actuator +
n= PositionSensor + DistanceSensor +

SpeedSensor

 A configuration should include more occurrences of
a pair of elements (E3, E4) than of another pair of

elements (E1, E2) together: E1 + E2 < E3 +

E4. This is for instance useful to specify that the

number of consistency check plus the number of
response time auto test sensors should be superior to
the number of memory check plus the number of
functionality checks in actuators.

 The number of occurrences of E1 should be the half

of the number of occurrences of E2: 2 * E1 =E2.

This can be used to specify that there should be two
functionality checks auto tests per speed sensor.

Symbolic Constraints. CP over finite domains supports

the specification and analysis of symbolic constraints, i.e.
constraints that are checked on collections of variables. Here
are some symbolic constraints:

 alldifferent([E1, .., Ek]): specifies that in

any configuration the value of each of the E1..Ek

elements should be different pair wise.

 atmost(n, [E1..Ek], a): specifies that at most

n of the E...Ek elements are equal to a.

 atleast(n, [E1..Ek], a): specifies that at

least n of the E..Ek elements are equal to a.

 exactly(n, [E1..Ek], a): specifies that

exactly n of the E..Ek elements are equal to a.

 relation([E1..Ek],{[a1..ak]}): constraints

the tuple of elements E1...Ek to be equal to at least

one tuple in the collection of tuples [a1..ak]. This

allows to specify extensively a predetermined
collection of compatible values for [0..n]

elements.
In the VMC example, symbolic constraints can be used

for instance to specify predefined combinations of the
number of processors and the quantity of internal memory in
configurations (see constraint C7): relation ([[1,

4],[2, 8],[3, 16],[4, 32]], [Processor,

InternalMemory])

Reified constraints. In CP, the reification of a

constraintC into a variable C of the [0..1] domain is

achieved by a constraint:

C ⇔ contraintC

that establishes a correspondence between a constraint
constraintC and C as follows: constraintC shall be

verified in a configuration iff C is true (thus the other way

round C is true iff constraintC is verified).

For instance, some constraints should be verified in a
configuration only if some elements are included / excluded
from this configuration:

 E1 = 1 ⇒ C: whenever E1 is included, the

constraint constraintC reified with the C variable

should be satisfied.

 E1 = 0 ⇒ C: whenever E1 is excluded, the

constraint constraintC reified with C should be

satisfied. Of course, these reification constraints
could also be directly specified as:

E1 = 1 ⇒ constraintC ˄

E1 = 0 ⇒ constraintC.

In the VMC example, it would for instance be possible to
generate PL models from the VMC PL model to specify sub
families of VMC. One interesting such kind of sub family is
this in which a position actuator is associated with each
position sensor. Another aspect of this sub-family is that it
can be managed only as soon as there is a central processor
with a 1024 Ko internal memory. The constraint can be
reified as follows:

(Processor=1)˄(InternalMemory = 1024) ⇒ B

with

B ⇔ (PositionSensor = PositionActuator)

Likewise, reified constraints can be used to specify

preferences. In the VMC example, we may prefer, for cost
reasons, to not use a speed sensor when we have a distance
sensor. This preference can be expressed as follows:

DistanceSensor > 0 ⇒ minimize(SpeedSensor)

B. Example Illustration

Developing a constraint program that specifies a product
line model and resolving it is quite straightforward. For
example, the VMC product line presented in section 2 can be
specified, by using the rules presented in subsection A, with
the following program.

PositionSensor ∈ {0, 3} ˄ DistanceSensor ∈

{0, 4} ˄ SpeedSensor ∈ {0, 1} ˄ Actuator ∈

{0, 11} ˄ Processor ∈ {0, 4} ˄ [Visual,

Audio, Vibration] ∈ {0, 1} ˄

InternalMemory ∈ {4, 8, 16, 32} ˄
[ActuatorFunctionalityCheck,

ActuatorMemoryCheck,

SensorFunctionalityCheck,

SensorConsistencyCheck,

SensorResponseTimeCheck] ∈ {0, 1} ˄
Sensor = PositionSensor + DistanceSensor +

SpeedSensor ˄

Sensor ≥ 1 ˄

Actuator ≥ 1 ˄

Processor ≥ 1 ˄

1 ≤ Visual + Audio + Vibration ≤ 2 ˄

Actuator = Visual + Audio + Vibration ˄

Sensor ≥ 1 ⇒ SensorFunctionalityCheck = 1˄

Actuator ≥ 1 ⇒ ActuatorFunctionalityCheck

= 1 ˄

SensorConsistencyCheck = 1 ⇒

SensorResponseTimeCheck = 1 ˄

relation([[1,4],[2,8],[3,16],[4,32]],

[Processor, InternalMemory]) ˄

relation([[1,1],[2,2],[3,3],[4,3],[5,3],[6

,4],[7,4],[8,4]], [Sensor, Processor]) ˄

SpeedSensor + Vibration ≤ 1 ˄

Processor ≥ SpeedSensor +

min(PositionSensor,1)+ min(DistanceSensor,

1)+ Visual + Audio + Vibration.

Figure 3 illustrates the constraints set specifying the

VMC example and their interdependencies. Any constraint
solver can be then used to solve the program. For instance,
we use GNU Prolog to analyze the VMC system. For
instance, we obtain a list of 1044 products that were
generated in 16 milliseconds (CPU time).

Operations allowing configuration and analysis are
presented in the following sub-section.

Figure 3. The VMC product line modeled as a network, where nodes

represent constraints and edges indicate that concerned constraints share at

least one variable

C. PL Analysis

As shown in the Figure 4. PL model and configuration
requirements are expressed into constraints to allow analysis.
Analysis can be done at the domain level to reason on the PL
itself, as well as the application level, mainly by generating
either partial or full configuration (which corresponds to a
full valuation of variables).

Constraint

Value
Variable

valuated: boolean1..*

A
p

p
lie

s to >

1..*

0..*

0..*

A
p

p
lie

s to
 >

Configuration

Full
Configuration

Partial
Configuration

Is valuated by > Valuation

1

0..*

attribute >

1..*1

1..*

0..*

1

g
e

n
e

ra
te

 >

1..*

Configuration
Requirement

1..*

1..*

Domain Requirement

multiplicity

Interdependancy
Constraint

< applies to 1..*1..*

Product Line Model

1..*

Figure 4. Product line analysis using the Constraint Language.

Domain Level Analysis. Domain analysis level is
performed by specifying and resolving some constraints that
the PL must respect. These “meta constraints” can be used
for verification purposes, or to optimize the PL itself.

Examples of PL verification are:

 structural verification (e.g. two different elements
cannot have the same name),

 expressiveness verification criteria (e.g. the PL must
not be void or false)

 error-free verification (e.g. the PL must not include
dead elements)

 consistency verification (e.g. the PL must not
include false optional elements)

 the calculus of PL core elements, variant elements,
PL homogeneity and PL commonality.

Examples of PL optimization are the maximization of
reuse (e.g. any generated configuration must include at least
k elements), and the minimization of components cost (e.g.
the maximum cost of any generated configuration should not
exceed a certain value).

Application Level Analysis. At this level, we consider a

PL modeled using the constraint language. To perform
analysis we make use of CL resolution operators. Analysis
operations as listed in [4] can be assumed as follows (with
var the list of the PC variables):

 One product: labeling(var) allows to calculate
one valid solution for the modeled problem. Then,
alternative solutions can be calculated successively.

 All products:
find_all(var, fd_labeling(var),L) allows

enumerating all problem solutions in the list L.

 Number of products: this operation can be performed
while counting the result list length of the
find_all() operator, which literally gives
find_all ((X,Y), labeling([X,Y]),L),

length(L,N). N is the number of possible

solutions.

 Optimization: maximize(labeling(Vars),X)

allows to find a solution such that the objective
function X is maximized. Conversely,

minimize(labeling(Vars),X) allows to find a

solution that minimize the objective function X. This

function can be a constraint on for example the cost
or the benefit of PL devices. Optimization operation
can be used also domain level constraints (see
above).

 Valid product: a valid product is an assignment for
all the variables of the PC problem that does not
violate its constraints. Then, a product is valid if his
resolution, together with the PL constraints, does not
arises errors.

 Valid partial configuration: likewise, a partial
configuration is an assignment for some PC problem
variables that does not violate its constraints. Then, a
partial configuration is valid if his resolution,
together with the PL constraints, gives a valid total
configuration.

 Products which contain a given set of features: pre-
selecting some PL features means, in terms of PC,
that a True value is assigned to the corresponding
variables. Calculating products that contains a given
set of features boils down to resolve the PC problem

in which a True value is assigned to the desired
features.

 Multistep configuration: as discussed above,
decisions over steps can be programmed using
reified constraints.

 Dependency analysis having a partial configuration:
this operation returns a new configuration with the
features that should be selected and removed as a
result the propagation of the PL constraints. In terms
of CP, dependency analysis is performed by
resolving the PL problem augmented with the
assignment of the partial configuration.

IV. REPRESENTATION OF PRODUCT LINE MODELS AS

CONSTRAINT PROGRAMS

CP is a powerful paradigm that can deal with numerous
variability notations.

Table 1 illustrates transformations patterns of some
common constraints to all PLM representations. For reasons
of succinctness, others specific constraints are not introduced
in this paper.

Another use of constraints on the [0..n] domain in PL
is to apply them to element attributes, as proposed in [18]
with attributes associated to [0..1] elements. In [19], we
have demonstrated how to specify constraints on attributes to
reason on goal based product configuration, to guide for
example a cost/benefit analysis of products during their
configuration.

Besides, reified constraints can be used in staged
configuration. In [20], Czarnecki et al. define staged
configuration through specialization steps. A specialization
takes a PL model as input, and produces another PL model,
where certain configuration choices are eliminated. The
fundamental of staged configuration is then to enable extra
constraints that shall be associated to a configuration model,
which shall itself be considered as a PL model. Staged
configuration can be found useful when not all constraints
shall be verified at once, but enabled in an ordered fashion.
Reified constraints allow defining such constraints that are
enabled when some conditions are satisfied in a given step.

The constraints of a PL model that shall only be verified
at a stage of configuration identified must be reified.
Identifying stages of configuration can be done either using
FD variable that represents time (the version number of the
configuration) [21], or it can be conditioned by the inclusion
/ exclusion of some elements in the configuration.

Reified constraint can also be used to specify constraint
over decision points, as in [22] as follows. Assuming that a
decision point D is specified using constrains C1..Cn. A

constraint C on D shall simply be expressed as:

C ⇒ D, where D ⇔ C1 ˄ ... ˄ Cn

to indicate that whenever condition C is met (e.g. an
element is included in a configuration), the constraints
associated with decision point D shall be satisfied.

TABLE I. PATTERNS FOR TRANSFORMING PL MODELS,
REPRESENTED BY MEANS OF DIFFERENT FORMALISMS, INTO CP

Names and

Semantics

Representations CP

Representations

Mandatory

If the father

element (V1) is

selected, the

child element

(V2) must be

selected as well

and vice versa.

FODA representation

Class representation

V1 V2

1 1..1

OVM representation

Use case

representation

V1 > 0 ⇔ V2 > 0

(i.e., if V1>0

then V2>0 and

vice versa)

Optional

If the father

element (V1) is

selected, the

child element

(V2) can but

needs not be

selected.

Otherwise, if

V2 is selected,

the father

element (V1)

must as well be

selected.

FODA representation

OVM representation

Use Case representation

[32]

Class representation

[30,31]
V1 V2

1 0..1

Ontology representation

[33]

V2 ≤ V1

(i.e., if V1 =1

then V2 =1 and

if V; if V2 =1

then V1 =1)

Requires

If element V1 is

selected, the

required

element V2 has

to be selected

as well, but not

vice-versa, that

is, V2 can be

selected when

V1 is not

Feature representation

Ontology representation

OVM representation

V1 > 0 ⇒ V2 > 0

(i.e., if V1 =

1 then V2 ≥ 1;

if V1 = 0 then

V2 is not

restricted by

V1)

V1 V2
Requires

V1 V2

V2 V1
Extends

V2 V1

V2 V1

<<extends>>

V2
<<extends>>

V1

V1 V2

V2 V1

V1 V2

selected.

Use Case representation

Exclusion

Indicates that

both elements

(V1, V2) cannot

be selected in

one product

configuration.

Feature representation

Ontology representation

OVM representation

V1 * V2 = 0

Or if V1 and V2 are

boolean variables:
V1 + V2 ≤ 1

(if V1 > 0 then

V2 = 0; if V2 >

0 then V1 = 0

and if V1 = 0

then V2 ≥ 0 and

vice versa)

Group

cardinality

Cardinality

determines how

many variants

(with the same

father) may be

chosen, at least

Min and at most

Max of the

group. Besides,

if one of the

children is

selected, the

father element

must be

selected as

well.

Feature representation:

OVM representation:

V1 ⇒ VP ˄
V2 ⇒ VP ˄ ...

Vi ⇒ VP ˄

VP ≥ 1 ⇒
V1+V2+...+Vi

≥ Min ˄

VP ≥ 1 ⇒
V1+V2+...+Vi

≤ Max

i.e., (Min=0,

Max=2 and PV=5)

then zero, one

or two elements

among

{V1,V2,…,Vi}

can be chosen.

Note that we do not deal with individual cardinalities and

that when we talk about cardinality-based feature models we
are considering only group cardinalities. Cloned features [17]
and multi-valued variables are partially treated by Karataş et
al. [28]. So, questions like: what is the semantics of cross-
tree constraints in presence of feature cardinalities? What
does it mean that A requires B, if B has a parent with more
than singleton cardinality ? Is the semantics existential ? Is it
universal ? Anything in between ? What does F1.A = F2.B
+ F3.C if any of the involved features is in a cloned sub-tree?
Are open issues and are proposed as future work.

V. EVALUATION

We evaluate the effectiveness of our approach by testing
its implementation and application feasibility.

Tool implementation. We developed an interactive

environment composed of three tools: VMWare [23],
VariaMos [26] and GNU Prolog[13]. VMWare offers a
graphical editor that supports drawing, loading and saving
cardinality-based feature models and export them as XMI
files. A snapshot screen of our too VMWare‟s interface is
shown in Figure 5. VariaMos is an Eclipse plug-in that
allows constraint programs management (e.g., creating,
editing and saving), verification (detect void models, false
product line models, dead variables, false optional variables,
not attainable domains and redundant constraints), analysis
(supporting all analysis functions documented by Benavides
et al. in their latest literature review [25], see section 3.3 of
this paper) and specification of requirements (e.g., configure
a product, define a filter or a partial configuration and
specify extra constraints or particular requirements). GNU
Prolog is our CP solver.

Feasibility study with a real case application. One
particular question that can be raised about the new kinds of
constraints that have been identified in this paper is “are they
useful?” Although only long term experience shall provide a
definitive answer to this question, one might be interested in
looking for special constraints that could be specified in a
real case.
To do so, we have used our CP over FD approach to specify
constraints on a family of blood analysis automatons [19] in
the context of a cooperation with the partner industry
STAGO.

Figure 5. Snapshot of VMWare tool with feature representation of the

STAGO‟s product line model.

Using FD constraints allowed us to specify the same
constraints as the one that we had identified to reason about
cost and revenue of each feature. To do so, we associated
[0..n] attributes to each features to specify costs and benefits.
We had to define a fix value for n – we chose to use the same
maximum cost and revenue for all features for the purpose of
the study.

VP

Vi V2 … V1

Min..Max

V1 V2
Excludes

V1 V2

V1

<<includes>>

V2

V1
<<includes>>

V2

For example, we specified constraints on the minimal
number of measurement wells depending on the required
tests and the required cadence for these tests.

Chronometric.NumberOfWells +

Colorimetric.NumberOfWells +

Immunologic.NumberOfWells ≥

max(LaunchTest.TestCadence) *

max(LaunchTest.TestDuration)

We could also specify that the initially optional function

„Agitate‟ must be implemented whenever one of the tests

TCA, ATIII or PC are not included.

(LaunchTest.TestType ≠ TCA)

(LaunchTest.TestType ≠ ATIII)

(LaunchTest.TestType ≠ PC) ⇒ Agitate = 1

Looking at our list of FD specific constraints, we

identified the following constraints which could not be

specified with {true, false} features, but can be specified

with our integer constraint notation:

 constraints on both [0..n] features and feature
attributes. For example, we could play with the
number of chronometric, colorimetric and
immunologic measures and specify a constraint on
the number of their occurrence with regard to the
cadence and duration of the test.

Chronometric + Colorimetric +

Immunologic ≥ LauchTest.TestCadence *

LauchTest.TestDuration

 symbolic constraints such as:
Atmost(1,[Agitate,Mix,Incubate],2]) to

specify that each activity in a methodology can be
repeated at most twice.

 Another example of use of symbolic constraints was
to specify possible combinations of value of the
cadence, duration, and kind of determination for
different kinds of test types:

Relation ([LauchTest.TestType,

LauchTest.TestDuration,

LauchTest.TestCadence, determination],

[[TP, 2, 14, simple], [TP, 2, 14,

double],[TCA, 2, 14, simple],[TT, 3,

2, double],[Fib, 10, 5,

double],[ATIII, 15, 3, double],[VwF,

13, 8, double],[PC, 2, 6,

simple],[DDi, 6, 8, simple]])

 Last, we were able to specify reified constraints such
as:

LaunchTest.TestType = TCA ⇔ C

C ⇒ Chronometric = 1 ˄
Chronometric.Speed = normal

which enforces the use chronometric measurement

technique when TCA test is demanded. It specifies

also the required speed for this test.

We also used feature attributes to support cost/benefit

analysis on measurement techniques. The following goals

could for instance be specified:

Min (Chronometric.Cost *

Chronometric.NumberOfWells +

Colorimetric.Cost *

Colorimetric.NumberOfWells +

Immunologic.Cost *

Immunologic.NumberOfWells)

˄ Max (Chronometric.Revenue *

Chronometric.NumberOfWells +

Colorimetric.Revenue *

Colorimetric.NumberOfWells +

Immunologic.Revenue *

Immunologic.NumberOfWells)

Figure 6 shows the STAGO product line model specified
as a constraint program and the configuration interface of our
tool VariaMos. Note that some constraints like the symbolic
constraint (1,[Agitate,Mix,Incubate],2]) discussed

before, can be specified not as a constraint of the product line
but as a particular constraint on configuration stage. Note
also that the value of each feature can be specified in the
configuration interface for a particular product (assigning a
value to all features) or for a collection of products (assign a
value to some features) where the assignation of the value 0
to a feature means that the feature must not belongs to
configured product(s).

Figure 6. Snapshot of our tool VariaMos. STAGO product line model

representation as a constraint proram and its configuration interface.

Our observations are also the following ones:

 Incremental development and maintenance of PL
models is made possible as long as models are
modified by adding/removing constraints.

 We use GNU-Prolog as solver. It computes very
efficiently a first complete solution w.r.t. the
selected/excluded features. In practice, this helped us
in the configuration process as it provided a general
idea of the product that was being built.

 GNU-Prolog computation of the next solution was
effective as it offered an alternative to the

configurations that had already been explored.
Iterating over this function allowed to review the
various solutions one by one – or to identify that the
variability space was still very open by counting the
number of remaining configurations that satisfied the
constraints for the requirements at hand.

These results are encouraging and confirm that CP over

FD is well suited to precisely model and efficiently

configure PL.

VI. RELATED WORKS

This paper is not the first to explore the use of constraint
programming in the context of PL. Some proposals had been
made to support automatic analysis of feature-based models
in order to allow retrieving information. The largest number
of works to automate features analysis is based on
propositional logic [1] [2] [3] [18]. Batory was the first to
use SAT solvers to analyze feature models. In these
constraints, features are boolean variables (either they are
included or not in a configuration).

Czarnecki's proposals of staged configuration, features
cardinalities and feature attributes have created an
opportunity to move from boolean to integer constraints
specification. Our approach belongs to this family of
approaches that relies on integer domain constraints rather
than on boolean ones. The simple fact of replacing the {true,
false} domain by [0..1] opens the door to kinds of constraints
that did not exist in the aforementioned approaches.

In particular, Benavides's works [4] [18] have shown
how feature models could be analyzed by specifying integer
constraints on attributes associated with features. In
Benavides's approach, features themselves still have a {true,
false} domain, while our approach allows dealing with [0..n]
features.

 White et al. [21] also provide a CP support for multi-step
configuration over time, while respecting resource
constraints. We believe reification constraints able to deal
with progressive configuration either by providing
successive complete products as in [21] or successive partial
configurations as in [20].

Besides, aforementioned approaches consider only single
monolithic feature models. As shown in section 4, our
approach provides the ability to deal with multiple models
that are specified using different variability languages.

Furthermore, our approach explores more FD Constraint
Programming capabilities that have not been exploited so far.
It provides numerous types of constraints (e.g. symbolic and
reified constraints) that have not been proposed by any of the
approaches referenced before.

VII. CONCLUSION

CP has proved a powerful paradigm for solving
combinatorial problems arising in many domains, such as
scheduling, planning, vehicle routing, configuration,
networks or bio-informatics. Our proposal is to specify
Product Lines as a finite domain constraint program i.e. not
just a boolean program that implements features selection in
a FODA-like models, but a series of integer constraints that

apply to anything that varies and has configuration
constraints.

 We believe our approach is original as (a) it is a first
attempt to integrate various variability models through a
unique representation, (b) it supports direct reasoning on
product line models (c) it supports the specification of
complex configuration requirements.

Nonetheless, some further work is required for the multi-
valuated PL elements, on which constraints may need some
adjustments. Besides, the approach can be extended to deal
with reals, which can for example allow performing some
probabilistic reasoning (some industries like Renault have
expressed the need to plan pieces logistics). We have
explored constraint programming on finite domains, but
many other domains could be relevant: Reals, Intervals,
Trees, Lists, and Sets. Constraint Programming is versatile in
that it adapts quite well to different applications. We have
little doubt that the systematic exploration of these domains
will generate new knowledge about product lines
engineering.

REFERENCES

[1] Mannion M.: Using first-order logic for product line model
validation. In Proceedings of the Second Software Product Line
Conference (SPLC‟02), LNCS 2379, pages 176–187, San Diego, CA,
Springer (2002)

[2] Zhang W., Zhao H., and Mei H.: A propositional logic-based method
for verification of feature models. In J. Davies, editor, ICFEM 2004,
volume 3308, pages 115–130. Springer–Verlag (2004)

[3] Batory D.: Feature models, grammars, and propositional formulas. In
Software Product Lines Conference, volume 3714 of Lecture Notes in
Computer Sciences, pages 7–c. Springer–Verlag (2005)

[4] Benavides D., Ruiz-Cortés A., and Trinidad P.: Using constraint
programming to reason on feature models. In The Seventeenth
International Conference on Software Engineering and Knowledge
Engineering, SEKE 2005, pages 677–682 (2005)

[5] White J., Schmidt D., Benavides D., Trinidad P., and Ruiz-Cortes A.:
Automated diagnosis of product-line configuration errors in feature
models. In Proceedings of the Sofware Product Line Conference
(2008)

[6] Trinidad P., Benavides D., Duran A., Ruiz-Cortés A., and Toro M.:
Automated error analysis for the agilization of feature modeling.
Journal of Systems and Software, 81(6):883–896 (2008)

[7] White J., Doughtery B., Schmidt D., and Benavides D.: Automated
reasoning for multi-step software product line configuration
problems. In Proceedings of the Sofware Product Line Conference,
pages 11–20 (2009)

[8] Trinidad P., Benavides D., and Ruiz-Cortés A.: A first step detecting
inconsistencies in feature models. In CAiSE Short Paper Proceedings
(2006)

[9] Jaffar J. and Maher M. J.: Constraint logic programming: A survey.
Journal of Logic Programming, Vol. 19/20 (1994)

[10] Le Berre D., SAT4J solver, www.sat4j.org.

[11] Sheldon B. Akers. Binary Decision Diagrams. IEEE Transactions on
Computers, C-27(6):509–516 (1978)

[12] SMV system, www.cs.cmu.edu/~modelcheck.

[13] Diaz D. and Codognet P.: Design and Implementation of the GNU
Prolog System. Journal of Functional and Logic Programming
(JFLP), Vol. 2001, No. 6 (2001). Available to download from:
http://www.gprolog.org/

[14] CHOCO solver, http://www.emn.fr/z-info/choco-solver/index.html.

http://www.sat4j.org/
http://www.gprolog.org/

[15] Jaffar J., Michaylov S., Stuckey P. and Yap R.: The CLP(R)
Language and System. ACM Transactions on Programming
Languages and Systems, 14(3) (1992)

[16] Colmerauer A.: An Introduction to Prolog III. Communications of the
ACM, vol. 33, no. 7, (1990)

[17] Czarnecki K., Helsen S., and Eisenecker U.W.: Formalizing
cardinality-based feature models and their specialization. Software
Process: Improvement and Practice, 10(1):7–29 (2005)

[18] Benavides D.: On the Automated Analysis of Software Product Lines
Using Feature Models. A Framework for Developing Automated
Tool Support. University of Seville, Spain, PhD Dissertation (2007)

[19] 19. Djebbi O., Salinesi C.: RED-PL, a Method for Deriving Product
Requirements from a Product Line Requirements Model.
International Conference on Advances in Information Systems
Engineering, CAISE‟07, Norway (2007)

[20] Czarnecki K., Helsen S., and Eisenecker U.: Staged configuration
through specialization and multi-level configuration of feature
models. Software Process Improvement and Practice, 10(2) (2005)

[21] White J., Doughtery B., Schmidt D., and Benavides D.: Automated
reasoning for multi-step software product line configuration
problems. In Proceedings of the Sofware Product Line Conference,
pages 11–20 (2009)

[22] Buhne S., Lauenroth K., Pohl K.: Modelling Requirements
Variability across Product Lines. Proceedings of 13th International
Conference on Requirements Engineering, pp. 41-50. France (2005)

[23] Salinesi C., Rolland C., Mazo R.: VMWare: Tool Support for
Automatic Verification of Structural and Semantic Correctness in
Product Line Models. Proceedings of the VAMOS Workshop, Spain
(2009)

[24] Djebbi O., Salinesi C., Diaz D.: Deriving Product Line Requirements:
the RED-PL Guidance Approach. Asian Pacific Software Eng.
Conference (APSEC), Japan (2007)

[25] Benavides David, Segura Sergio, Ruiz-Cortés Antonio. Automated
Analysis of Feature Models 20 Years Later: A Literature Review.
Information Systems . Elsevier. 2010.

[26] Mazo Raul, VariaMos tool, available to download at
https://sites.google.com/site/raulmazo/

[27] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson, Feature- Oriented
Domain Analysis (FODA) Feasibility Study, Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, November 1990.

[28] Ahmet Serkan Karataş, Halit Oğuztüzün, Ali Doğru. Mapping
Extended Feature Models to Constraint Logic Programming over
Finite Domains. SPLC, Korea, September 2010

[29] Salinesi, C., Mazo, R., Diaz, D., Djebbi, O. Solving Integer
Constraint in Reuse Based Requirements Engineering. 18th IEEE
International Conference on Requirements Engineering (RE'10).
Sydney, Australia. September-October 2010.

[30] Korherr, B., List, B.: A UML 2 Profile for Variability Models and
their Dependency to Business Processes. 1st International Workshop
on Enterprise Information Systems Engineering (WEISE 07),
September 2007, Regensburg, Germany, IEEE Press, 2007.

[31] T. Ziadi, Manipulation de Lignes de Produits en UML, thèse de
l‟Université de Rennes 1, équipe IRISA-TRISKELL, directeur Jean-
Marc Jézéquel, soutenue en Décembre 2004.

[32] T. van der Maßen and H. Lichter, Modeling Variability by UML Use
Case Diagrams, in Proceedings of the International Workshop on
Requirements Engineering for Product Lines (REPL‟02), pages 19–
25, September 2002.

[33] Abo Zaid, L., Houben G-J., De Troyer, O., Kleinermann, F.: An
OWL- Based Approach for Integration in Collaborative Feature
Modelling, 2008.

https://sites.google.com/site/raulmazo/

