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Abstract

Web services run in complex contexts where arising events may compromise
the quality of the whole system. Thus, it is desirable to count on autonomic
mechanisms to guide the self-adaptation of service compositions according to
changes in the computing infrastructure. One way to achieve this goal is by im-
plementing variability constructs at the language level. However, this approach
may become tedious, difficult to manage, and error-prone. In this paper, we
propose a solution based on a semantically rich variability model to support the
dynamic adaptation of service compositions. When a problematic event arises
in the context, this model is leveraged for decision-making. The activation and
deactivation of features in the variability model result in changes in a composi-
tion model that abstracts the underlying service composition. These changes are
reflected into the service composition by adding or removing fragments of Busi-
ness Process Execution Language (WS-BPEL) code, which can be deployed at
runtime. In order to reach optimum adaptations, the variability model and its
possible configurations are verified at design time using Constraint Program-
ming. An evaluation demonstrates several benefits of our approach, both at
design time and at runtime.

Keywords: Variability, Models at runtime, Autonomic computing, Dynamic
adaptation, Dynamic software product line, Web service composition,
Constraint programming, Verification

1. Introduction

Software is executed in complex, heterogeneous and highly intertwined com-
puting infrastructures in which a diversity of events may arise. For example,
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security threats, network problems, performance reduction in one of the servers,
etc. In these situations, it is desirable to adapt the software to continue offering
the required functionality. Software adaptation can be seen as the ability for
humans to reconfigure the software and then restart it, or the ability of the
software to reconfigure itself during execution (Akkawi et al., 2007). The first
case can be referred to as static adaptation and the second one as dynamic
adaptation. It is possible to carry out static adaptations in cases where the
system can be shut down in order to make the required manual adaptations.
However, there are critical systems that cannot be stopped to implement the
adaptations, e.g. software that run power grids and software for global bank-
ing. In such cases, software needs to dynamically adapt its behavior at runtime
in response to changing conditions in its supporting computing infrastructure
(McKinley et al., 2004, Cetina et al., 2009, Alférez and Pelechano, 2011a). Dy-
namic adaptation of software behavior refers to the act of changing the behavior
of some part of a software system as it executes, without stopping or restarting
it (Keeney, 2004).

In order to carry out dynamic adaptations, we argue that software needs to
take the following key issues into account :

– Context Awareness : For the purpose of supporting dynamic adapta-
tions, software should be aware of changes in its context. The context is
any information that can be used to characterize the situation of an entity
(Dey, 2001). Context-aware systems are concerned with the acquisition
of context, the abstraction and understanding of context, and application
behavior based on the recognized context (Schmidt, 2002).

– Adaptation Policies : Adaptation policies change the behavior of the
system during execution (Morin et al., 2008). They state in a declarative
manner the actions required to adapt the running system to a configura-
tion that better fits its current context.

– A Supporting Infrastructure : It is unthinkable to depend on man-
ual adaptations because of the inherent intricacy of today’s systems and
the desired prompt responses. Furthermore, critical systems cannot be
stopped in order to carry out the necessary adaptations. Thus, a comput-
ing infrastructure should provide support for dynamic adaptations to face
context events (Alférez and Pelechano, 2011a, Cetina et al., 2009).

– Verification : Adapting the system according to changes in the context
is not enough. It is necessary to ensure that new system configurations are
not invalid in a given situation.

1.1. The Need for Dynamic Adaptation of Service Compositions
A good example of systems that require dynamic adaptations are the ones

based on Web service compositions (or simply called service compositions). Web
services have evolved as a standardized and technology-agnostic interoperable
way of integrating processes and applications (Little, 2003). Basically, a Web
service is a special software component that is searched, bound, and executed
at runtime and allows systems to interact through standard Internet protocols
(Koning et al., 2009). In order to reach the full potential of Web services, they
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can be combined to achieve specific functionalities. If the implementation of
a Web service business logic involves the invocation of other Web services, it
is called a composite service. The process of assembling a composite service is
called service composition.

Web services run in a context (e.g. their operating computing infrastructure).
In an ideal scenario, Web service operations would do their job smoothly. How-
ever, several exceptional situations may arise in the complex, heterogeneous, and
changing contexts where they run. For instance, a Web service operation may
have greatly increased its response time or may have become unavailable. Cases
like these make evident the need for dynamic adaptations in critical systems that
are based on service compositions. These adaptations may be triggered in order
to do the following at runtime : keep certain contracts known as service-level
agreements (SLAs), offer extra functionality depending on the context, protect
the system, or make the system more usable.

Related work about dynamic adaptation of service compositions can be clas-
sified into three groups. The first group supports dynamic adaptation at the
language level (Colombo et al., 2006, Koning et al., 2009, Baresi and Guinea,
2011, Narendra et al., 2007, Sonntag and Karastoyanova, 2011, Moser et al.,
2008). This approach can hinder reasoning about adaptations with complex and
error-prone scripts (Fleurey and Solberg, 2009). The second group focuses on
low-level implementation mechanisms for self-adaptation (Erradi and Mahesh-
wari, 2005, Cardellini et al., 2010, Mosincat and Binder, 2008). This approach
lacks support for analyzing the inherent variability of dynamic adaptation at
design time. The third group deals with modeling variability in service compo-
sitions that support business processes (BPs) (Nguyen et al., 2011, Sun et al.,
2010, Hadaytullah et al., 2009, Razavian and Khosravi, 2008, Rosemann and
Van der Aalst, 2007, Gottschalk et al., 2008, Puhlmann et al., 2005). Research
works in this group propose the creation of variability models that are only
used at design time. We argue that the knowledge in variability models should
be leveraged at runtime to guide adaptations and hide the complexity of the
adaptation space. Moreover, the approaches in the aforementioned groups lack
verification of possible service composition configurations caused by dynamic
adaptations.

1.2. Contribution
In this paper, we propose a framework that uses variability models at runtime

to support the dynamic adaptation of service compositions. This framework
spans over design time and runtime, and states the models, tools, and artifacts
that can be used to support dynamic adaptations.

At design time, the framework provides tool-supported steps for creating the
models that guide autonomic changes. In general terms, a service composition
can be viewed as the assembly of pieces to deliver functionality; those pieces
can be Web services offered by different providers or composite services them-
selves. We argue that in the advent of problematic events, functional pieces
can be added, removed, replaced, split or merged from a service composition at
runtime, hence delivering a new service composition configuration. To this end,
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we propose that service compositions be abstracted as a set of features in a vari-
ability model. A feature can be defined as “a logical unit of behavior specified
by a set of functional and non-functional requirements” (Bosch, 2000). Thus,
adaptation policies describe the dynamic adaptation of a service composition
in terms of the activation or deactivation of features in the causally connected
variability model (i.e., changes in this model cause the service composition to
adapt and vice versa). The variability model and its possible configurations are
verified by means of Constraint Programming (CP) prior execution to ensure
safe recompositions.

At runtime, a computing infrastructure detects problematic events that arise
in the context and carries out the necessary adjustments on the service com-
position. The activation and deactivation of features in the variability model
result in changes in a composition model, which is an abstract representation of
the underlying service composition. These changes are reflected into the service
composition by adding or removing fragments of Business Process Execution
Language (WS-BPEL) code, which are deployed at runtime. WS-BPEL is a
standard language for specifying BP behavior based on Web Services (OASIS,
2007). Flexible service composition updates are possible through Dynamic Soft-
ware Product Line (DSPL) engineering (Hallsteinsen et al., 2008).

This paper offers several novel contributions beyond those of our previously
published works (Alférez and Pelechano, 2011a,b, Cetina et al., 2009, Alférez
and Pelechano, 2012b): 1) in our previous work, the generation of variability
model configurations was carried out manually. This was an error-prone and
time-consuming task. As a result, in this paper we propose a tool that au-
tomatizes the creation of variability model configurations at design time; 2)
our previous work did not support the verification of the variability model and
its possible configurations. As a result, some undesirable dynamic adaptations
could emerge at runtime. Therefore, in this paper we incorporate a constraint
logic programming solver to automatize the verification of the variability model
and its configurations. Although this solver has been used in our previous work
(Mazo et al., 2012), it is the first time that it is used to verify the variability
model configurations that are used at runtime; 3) context reasoning has been
further exploded by means of inference rules and more expressive adaptation
policies; 4) we propose an strategy to avoid the saturation of the system when
several context events arise in tight time frames; 5) in our previous work, the
translation of changes in the composition model into WS-BPEL code was slow
(Torres et al., 2012). In this paper, we propose a faster solution based on
fragments of WS-BPEL code; and 6) in this paper, our approach supports dy-
namic adaptations on an enterprise orchestration engine. Instead of extending
the functionality of the orchestration engine, we offer a transparent solution in
which the engine does not have to be modified.

The remainder of this paper is structured as follows: Section 2 describes
a running example that illustrates the need for dynamic adaptation of service
compositions. Section 3 gives an overview of our framework for dynamic adap-
tation of service compositions. Section 4 describes the models that are created
at design time to support dynamic adaptations. Section 5 describes the com-
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puting infrastructure to deal with dynamic adaptations. Section 6 introduces
a demonstration of our framework. Section 7 presents the evaluation of our
framework. Section 8 presents related work, and Section 9 presents conclusions
and future work.

2. Running Example

To illustrate the need for self-adaptive service compositions, we introduce a
composite service that supports online book shopping at Orange Country Book-
store. The example is specified with the Business Process Model and Notation
(BPMN) in Figure 1. BPMN tasks express Web service operations (e.g. UPS
Shipping service); and BPMN subprocesses express composite service operations
(e.g. Barnes & Noble Books composite service).

Barnes & Noble Books

Search
Book

Show Book
Info

Show Related
Titles

x + +

book not found

book found

Barnes & Noble 
Shopping Cart

Google
Authentication

Payment
Calculator

Bank of 
America Credit
Card Payment

x

add more books

checkout

x

E-mail Invoice

UPS
Shipping

+

x
invalid card

+

valid card

Figure 1: A BPMN model that represents a composite service for online book shopping

The business process starts when a customer looks for a book on the web-
site of Orange Country Bookstore. The first thing the customer wants to do
is identify the books to purchase. The searching operation is provided by the
Search Book Web service, which is part of the Barnes & Noble Books compos-
ite service. When a book is found, then the book information is returned to
the customer by the Show Book Info Web service while at the same time the
information for other related books is listed by the Show Related Titles Web
service. If no book is found, then the customer must refine the search, e.g. using
supplementary or different search criteria, or undertake another search. In the
next step, the customer adds books into the shopping cart through the Barnes
& Noble Shopping Cart Web service. The process can start over again until
the customer is satisfied with his or her selection. When the customer is ready
to checkout, he or she has to be authenticated by the Google Authentication
Web service. Then, the in-house Payment Calculator Web service calculates the
total amount to be paid. The payment is done through the Bank of America
Credit Card Payment Web service. Finally, if the credit card information is
valid, the in-house E-mail Invoice Web service sends an e-mail to the customer
with the invoice while the UPS Shipping Web service is invoked to deliver the
book. Otherwise, the process terminates.
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Different context events may arise in this heterogeneous infrastructure, which
call for dynamic adaptations. For example, any third-party Web service opera-
tion may fail or perform below required SLAs. The drivers to carry out dynamic
adaptations in this example are as follows: 1) since this service composition sup-
ports a critical short-running BP (i.e., a process that is contained within a single
transaction), it is impossible to shut down the system to make adaptations; 2) as
a business differentiator, the online book shopping process requires high avail-
ability and high performance. Availability deals with the readiness for correct
service in a specific time (Cotroneo et al., 2002). Performance can be measured
by observing the current response time to access a Web Service, or by observing
the execution time that a Web service takes to execute a job (response time
plus execution time) (Ameller and Franch, 2008). Service operations that vio-
late these quality attributes trigger service recompositions; and 3) any necessary
adaptation should be verified beforehand to detect undesirable results, such as
inconsistencies or delivery of suboptimal solutions in terms of availability or
performance.

3. A Framework for the Dynamic Adaptation of Service Compositions

We propose the following strategy to offer a solution for the dynamic adapta-
tion of service compositions. First, the service composition is modeled at design
time. Then, we introduce mechanisms to express where and how service com-
positions can be adapted to face arising context events. These mechanisms are
expressed as easy-to-understand and as highly-abstract as possible. At runtime,
we provide an infrastructure that detects changes in the context and enables dy-
namic adaptation. To make this strategy a reality, we propose a framework that
states the models, tools, and artifacts that can support dynamic adaptation of
service compositions (see Figure 2). This framework consists of two phases:
Preparation and Dealing with Dynamic Adaptation.

In order to support dynamic adaptations in our framework, it is necessary to
count on abstractions that represent the context, the dynamic configurations of
the service composition, and the service composition itself. Also, it is necessary
to create the adaptation policies that move the service composition to new con-
figurations. The Preparation Phase covers the creation of these artifacts (see
the top of Figure 2). A composition model describes the service composition. A
variability model describes the dynamic configurations of the service composi-
tion in terms of activation or deactivation of features (thus, the knowledge that
is captured by this model is the basis for adaptation policies). We also propose
the creation of two additional supporting models. First, a context model for-
malizes collected context knowledge. Second, since changes in the variability
model guide adaptations in the service composition, which is represented in the
composition model, we propose a weaving model to connect these two models.

We have developed two building blocks to provide variability reasoning at
design time: 1) the Configuration Generator uses a variability model and
a set of adaptation policies to automatically generate the adaptation space with
all the possible configurations of the variability model; and 2) the Verifier uses
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Figure 2: A framework for the dynamic adaptation of service compositions

CP to verify the variability model and check that the generated configurations
respect the constraints imposed by the variability model. Verification of the
variability model entails finding undesirable properties, such as contradictory
information or the impossibility to offer a valid configuration for a particular
context. If there are errors in the variability model, they will inevitably spread
to an undefined number of configurations, which can drastically diminish the
quality and outcome of the entire adaptation.

In the Dealing with Dynamic Adaptation Phase, the models and adap-
tation policies that are created in the Preparation Phase are used to guide
the self-adaptation of the service composition (see the bottom of Figure 2).
The proposed infrastructure carries out the following steps to support dynamic
adaptations. First, the Model-Based Reconfigurator queries the context
information that is collected by the Context Monitor and updates the con-
text model accordingly. Then, the Model-Based Reconfigurator deter-
mines if any SLA has been violated in the context according to the information
in the context model. If any SLA has been violated, the Model-Based Re-
configurator executes an adaptation policy that indicates the activation or
deactivation of features in the variability model (i.e., to move to a new con-
figuration). Then, the set of active features in the new configuration of the
variability model is used to generate a reconfiguration plan, which is used to
modify the elements in the composition model accordingly. Modifications in
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the composition model are reflected into the service composition by adding or
removing fragments of WS-BPEL code, which are hot deployed in the Execu-
tion Engine. The Execution Engine uses the adapted WS-BPEL code to
orchestrate the service composition.

Our solution is framed in the closed-world assumption, in which necessary
adaptations are fully known at design time. Therefore, it is possible to know
beforehand the whole set of service operations that can be used during execution.
Our ongoing work presents preliminary results about the evolution of variability
models in the open world (Alférez and Pelechano, 2012b).

3.1. Underpinnings of Our Framework
This section provides the background for the four major topics our approach

relies on, which are: autonomic computing, models at runtime, dynamic soft-
ware product lines, and constraint programming.

– Autonomic Computing: Autonomic Computing (Horn, 2001) has evolved
as a discipline that covers the broad spectrum of computing in domains
as diverse as mobile devices (White et al., 2007) and home-automation
(Cetina et al., 2009). The Dealing with Dynamic Adaptation Phase
is supported by a computing infrastructure that is in charge of autonomously
reconfiguring the service composition at runtime according to arising con-
text events.

– Models at Runtime: A model at runtime is a “causally connected self-
representation of the associated system that emphasizes the structure,
behavior, or goals of the system from a problem space perspective” (Blair
et al., 2009). In our approach, a set of models, in which the variabil-
ity model plays a fundamental role, is used at runtime to automatically
determine how the service composition should be adapted.

– Dynamic Software Product Lines: Software Product Line (SPL) en-
gineering supports prescribed reuse by selecting the features that are part
of a product while removing others that are not part of it (Clements and
Northrop, 2001). In our framework, SPL features are used to represent
Web service operations that can be selected or deselected in a service com-
position (Alférez and Pelechano, 2011b). DSPL engineering goes a step
further from SPL with the investigation of development issues for reusable
and dynamically reconfigurable core assets. Basically, DSPL binds varia-
tion points at runtime when software is launched to adapt to the current
context and during operation to adapt to context changes (Hallsteinsen
et al., 2008). When features are activated or deactivated at runtime due
to changes in the context, our framework’s DSPL architecture supports
the dynamic service recomposition.

– Constraint Programming: CP has proven to be successful in many rel-
evant application areas such as scheduling, planning, vehicle routing, and
resource allocation (Rossi et al., 2006). CP is a declarative programming
paradigm to solve Constraint Satisfaction Problems (CSP). A CSP is de-
fined by a set of problem variables (i.e., the unknowns), each associated
with a domain of values, and a set of constraints. A constraint is a logical
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relation between several variables restricting the values these variables can
simultaneously take. Solving a CSP consists in finding an assignment of
variables satisfying all the constraints. A constraint program mainly states
the constraints (incrementally) and asks the constraint solver to find a so-
lution. The solver is then used as a “black-box” ’ responsible for ensuring
the consistency of the constraints. In this work, CP is used to verify the
variability model and the generated variability model configurations.

4. Preparation Phase

In the Preparation Phase, we propose to create at design time the mod-
els and adaptation policies that shall be leveraged during execution for dynamic
adaptation (see Figure 3). Besides creating a composition model to represent a
service composition at a highly-abstract level, we propose that systems analysts
create a set of additional models to support adaptations. A variability model
describes the variants (representations of variability objects within domain arti-
facts (Pohl et al., 2005)) in which a service composition can change at runtime.
Thus, the variability model is appointed to solve the need for expressive and
easy-to-understand adaptation policies. Nevertheless, in order to replicate the
changes that are carried out in the variability model in the composition model,
it is necessary to count on a weaving model, which works as a bridge between
the elements in these models. Finally, a context model can be used for formal
analysis of context information for the service operations, which are represented
in the composition model.
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Figure 3: Preparation Phase
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Two tools support this phase. First, our MOSKitt4SPL tool 1 implements
the Configuration Generator. It supports the manual creation of vari-
ability models and adaptation policies. With this information, it automatically
generates the set of variability model configurations. Afterwards, we use our
GNU Prolog tool 2 (Diaz and Codognet, 2001, Diaz et al., 2012) to imple-
ment the Verifier that is in charge of verifying the variability model and the
generated configurations against the variability model.

4.1. Preparation Phase Steps

The importance of software design has been discussed for quite a long time
(Miller, 1989). A good software design is even more important when the cre-
ated models are used to guide dynamic adaptations. Therefore, it is necessary
to count on a strong basis at design time to adequately support necessary ad-
justments at runtime. In this section, we propose a detailed set of steps in
the Preparation Phase to create the abstractions that will guide dynamic
adaptation of service compositions (see Figure 4).

2. Create a Variability
Model

1. Abstract the 
Service Composition

5. Define Adaptation
Policies

7. Verify the Variability Model 
and its Configurations

3. Set Variability at the
Composition Model

Level

6. Generate Variability Model
 Configurations

4. Link Features to
Service Operations

Figure 4: Preparation Phase steps

Step 1: Abstract the Service Composition
In this step, we propose the creation of an initial composition model to

abstract the underlying service composition (such as the one in Figure 1). The
composition model is causally connected to the underlying service composition.
In this work, a BPMN model was chosen to represent the elements in a service
composition because BPMN is suitable to express sequences and dependencies
among Web services and composite services (Ayora et al., 2012). In order to
specify queries against this model at runtime, it is expressed in XMI format
and processed by the software infrastructure provided by the Eclipse Modeling
Framework (EMF) 3.

Step 2: Create a Variability Model
Even though the initial composition model represents the underlying service

composition, it lacks semantics for variability. Therefore, it is necessary to count

1. http://www.pros.upv.es/m4spl/.
2. http://www.gprolog.org/.
3. http://www.eclipse.org/modeling/emf/.
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on feasible, semantically-rich, and coarse-grained variability representations in
service compositions.

In this step we propose to create a variability model to describe variants
in which a service composition can evolve. These variants may provide better
Quality of Service (QoS), offer new services that did not make sense in the pre-
vious context, or discard some other services (Morin et al., 2009, Cetina et al.,
2009). Our approach requires a variability modeling technique to implement the
variability model, such as feature modeling (Kang et al., 1990), the Common
Variability Language (CVL) (Haugen et al., 2008), or any domain-specific lan-
guage to express variability. Feature modeling was chosen for variability mod-
eling and analysis because it can offer coarse-grained variability management
of service compositions and it has good tool support for variability reasoning
(Mazo, 2011).

In a feature model, features are hierarchically linked in a tree-like structure
through variability relationships such as optional, mandatory, and alternative
(Kang et al., 1990). Also, in this kind of model there is only one root feature
on which all the other features depend, and primitive features are the leaves
and compound features are the interior nodes. In our approach, features rep-
resent the functionalities of the Web-service-based system in a coarse-grained
fashion. Therefore, dynamic adaptations are carried out to keep the features of
the system at runtime when context changes are faced.

Figure 5 shows the feature model for our running example. Certain features
are appointed as variants that may be used to solve problematic context events
and preserve the functionality of the service composition at runtime. For exam-
ple, the UPS Shipping, the FedEX Express, and the DHL Delivery features are
variants that can be used during execution to accomplish the shipment func-
tionality. The variability model also has variation points that express decisions
leading to different variants at runtime. Since only one variant can be chosen
at a time in a particular variation point, there is an alternative relationship
between a variation point and its variants (e.g. the Shipment variation point).

Different techniques can be used to create a feature model that is aligned with
the elements in a composition model (Alférez and Pelechano, 2011b, Bae and
Kang, 2007). The feature model can be manually created with MOSKitt4SPL.
As the composition model, the feature model is also specified in the XMI for-
mat in order to reason about it at runtime (Cetina et al., 2009). The current
configuration concept expresses the set of features in the feature model with
“active” state at a particular time. Thus, the current configuration indicates the
functionalities that are provided by a composite service at a specific moment.
For instance, the features in gray in Figure 5 express the current configuration
when the system starts in our running example.

Step 3: Set Variability at the Composition Model Level
The initial composition model created in Step 1 does not have semantics

for variability. Nevertheless, this model should be able to change at runtime
when facing arising context events. Also, a service composition dictates an
ordered main workflow that has to be preserved in the composition model after
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Figure 5: Feature model for the online-book-shopping running example

adaptations have taken place (e.g. user authentication is carried out first, then
payment). In order to support these situations, we propose the creation of a base
composition model that extends the initial composition model with semantics for
variability and preserves the main workflow during adaptations. In our previous
work (Ayora et al., 2012), we specify a set of commonalities (i.e., elements that
are shared by all the configurations of the service composition) and variation
points in the base composition model. The reasoning about what is common
and variable in the base composition model is supported by the knowledge in the
variability model created in Step 2. In addition, it is necessary to specify variants
that can be bound into the variation points of the base composition model. For
instance, Figure 6 shows the base composition model and two variants in our
running example. At runtime, commonalities and the main workflow remain
constant. However, the variation points can be bound with different BPMN
variants.

Step 4: Link Features to Service Operations
In our approach, the features in the variability model are dynamically acti-

vated or deactivated to reach a particular configuration of the service composi-
tion. Therefore, it is necessary to count on a connection between the elements
in the variability model and low-level service operations. Since the composition
model represents the operations in the service composition at any moment, the
definition of a bridge between the elements in the variability model and the ele-
ments in the composition model could be used to support dynamic adaptations
in the underlying service composition.

In order to define this bridge, different techniques can be used, such as the
template approach based on superimposed variants (Czarnecki and Antkiewicz,
2005). In this work, we propose the creation of a weaving model (Alférez and
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Figure 6: Base composition model and two BPMN variants in our running example

Pelechano, 2011a, Del Fabro et al., 2006) since it is supported by the ATLAS
Model Weaver 4 tool. The weaving model can be considered as a mapping model
(Czarnecki and Eisenecker, 2000) that defines the mapping relationships between
a problem space model (i.e., the variability model) and a solution space model
(i.e., the composition model). In our running example, each link (or mapping)
has the following endpoints: the first endpoint refers to features in the feature
model; the second endpoint refers to BPMN variation points and commonalities
in the base composition model, and BPMN variants. Figure 7 shows a fragment
of the weaving model for the running example. It highlights the relationship
between the Barnes & Noble Books feature and a set of BPMN elements in the
Barnes & Noble Books variant 5.

Step 5: Define Adaptation Policies
In order to define adaptation policies, first it is necessary to define the context

events that may trigger adaptations. Then, it is necessary to define the actions
to be carried out in the service composition to solve particular context events.
These two substeps are described as follows.

Step 5.1: Define Context Conditions
In order to solve the need for expressing the context in a way that supports

formal reasoning of its current status and possible arising situations, we pro-
pose an ontology-based context model that leverages Semantic Web technology.
Specifically, we make use of the Web Ontology Language (OWL) 6 to support

4. http://www.eclipse.org/gmt/amw/.
5. The ATLAS Model Weaver tool requires only one destination model. Therefore, at the

implementation level we have created one destination BPMN model with a pool that contains
the base composition model, and additional pools for each variant.

6. http://www.w3.org/TR/owl-ref/.
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Figure 7: A fragment of the weaving model for the running example

the formal analysis of the contextual information that is captured by the Con-
text Monitor. OWL extends the expressivity of the Resource Description
Framework (RDF) 7 by adding an additional layer of semantics on top of RDF.
With RDF, the contextual knowledge can be decomposed into small pieces, with
some rules about the meaning (or semantics) of those pieces.

Figure 8 shows the ontology for our running example visualized in On-
toGraf 8. The Thing superclass has two classes, namely CompositeWebService
and WebService, which respectively represent composite services and Web ser-
vices. Classes are interpreted as sets of individuals. Individuals represent spe-
cific composite service and Web service operations. Individuals keep runtime
information for service operations represented in the base composition model
and in variant models (see Step 3) to collect contextual information no matter
what the current configuration of the service composition is.

Each individual has a set of datatype properties (i.e., relations between in-
stances of classes and RDF literals or XML schema datatypes). These datatype
properties are used to keep track of context information. Since dynamic adap-
tations are triggered when a particular SLA is at risk, datatype properties keep
information about qualitative properties in the QoS context category proposed
by (Bandara et al., 2009). In (Bandara et al., 2009), dynamically relevant qual-
itative properties in the QoS context category are organized into the following
four groups based on the type of measurement performed by each attribute:
runtime attributes such as availability and performance, financial/business at-
tributes such as execution cost, security attributes such as non-repudiation, and
trust attributes such as good reputation of service operations.

Since our running example is concerned with the availability and perfor-
mance of the service composition, each individual of the WebService class has
the following datatype properties (or QoS runtime attributes): isAvailable

7. http://www.w3.org/RDF/.
8. http://protegewiki.stanford.edu/wiki/OntoGraf.
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Figure 8: Context model for the running example

indicates if the service operation is currently available (it is a Boolean value);
hasResponseTime indicates the current response time in milliseconds to have
access to a particular Web service operation; and hasExecutionTime indicates
the current execution time in milliseconds that a Web service operation takes
to execute a job. The individuals of the CompositeWebService class have the
same datatype properties of the WebService class’ individuals. In this case, the
isAvailable datatype property is TRUE if all the compound service operations
are available. Also, the values of the hasResponseTime and hasExecution-
Time datatype properties are the averages of the response times and execution
times of the compound service operations, respectively. The information that
can be kept in datatype properties is very versatile. For instance, they can
be also used to track network performance when orchestrating remote service
operations (e.g. latency, throughput, and bandwidth).

In this work, we propose that the value of particular datatype properties
in complicated scenarios (e.g. when it is necessary to figure out if a service
composition is under attack) can be inferred by means of logic rules over context
information. For simple service compositions, rules can be obtained from human
experts by collecting empirical data from the current service composition or by
analyzing collected data to discover the symptoms of problematic situations. In
complex service compositions, it is even possible to use methods for generating
rules from data (e.g. with heuristics or neural networks). For instance, it is
possible to infer with Jena 2 9 that a service operation is under attack in a T1
network when the execution time is extremely high, the latency is higher than
five milliseconds, and the bandwidth is lower than 1.544 Mbps (see Listing 1).

9. http://incubator.apache.org/jena/.
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@prefix j.0: http ://my.ontology#
[underAttack: (?s rdf:type j.0: WebService)

(?s j.0: hasExecutionTime ?c) greaterThan (?c ,30000)
(?s j.0: hasLatency ?c) greaterThan (?c,5)
(?s j.0: hasBandwidth ?c) lessThan (?c ,1.544)
-> (?s rdf:type j.0: underAttack)

Listing 1: Rules to infer that a service operation is under attack

In order to solve the need for examining the compliance of certain situa-
tions in the context, context conditions are extracted from the context model as
Boolean expressions. A context condition works as an SLA. If a context condi-
tion is accomplished (i.e., an SLA is violated), then an adaptation is triggered
on the service composition to deal with the arising situation. Each context
condition is represented as a RDF triple in the form of (subject, predicate,
object). The subject (i.e., an ontology individual) denotes a resource (i.e., a
Web service or a composite service operation), and the predicate expresses a
relationship between the subject and the object (i.e., the value of a datatype
property). Two context conditions in our running example are the following: 1)
B&NUnavailable = (Barnes&NobleBooks, isAvailable, false), which is trig-
gered when the Barnes & Noble Books composite service is currently unavail-
able; and 2) UPSHiExecTime = (UPSShipping, executionTime, >1,500 ms),
which is triggered when the current execution time of the UPS Shipping Web
service operation is greater than 1.5 seconds.

The aforementioned context conditions are ideal for situations where the
user is expecting an immediate response in short-running BPs. Nevertheless,
context conditions can also be used to check context situations in long-running
BPs that execute over an extended period of time and involve the coordination
of different people (e.g. the process to return a book) (Torres et al., 2012).
Context conditions can be manually defined in MOSKitt4SPL (see Figure 9).

Step 5.2: Define Resolutions
In SPL engineering, variability models focus on the efficient derivation of

customized product variants that, once created, retain their properties through-
out their lifetime. We argue that a service composition can activate or de-
activate its own features dynamically at runtime by fulfilling certain context
conditions. Therefore, we propose to use the resolution concept to represent
the set of changes in a feature model triggered by a context condition. In
other words, resolutions are the adaptation policies that express the transitions
among different configurations of the service composition in terms of activa-
tion or deactivation of features. Basically, a resolution (R) can be expressed
as a list of pairs (F, S ) where each pair is made up of a feature (F ) in a
feature model (FM ) and the state (S ) of the feature. Each resolution is asso-
ciated to a context condition (C ). A feature’s state is set to active or inactive:
RC = {(F, S) |F ε [FM ] ∧ S ε {Active, Inactive}} (Cetina et al., 2009).

In a different approach, adaptations are triggered to reach a configuration
with the maximum overall utility (Esfahani et al., 2011). To this end, utility
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Figure 9: Defining context conditions and resolutions in MOSKitt4SPL

functions provide the objective function for self optimization, mapping each pos-
sible state (e.g. the set of active service operations in a particular configuration)
of an entity (e.g. a service composition) into a real scalar value (Tesauro and
Kephart, 2004). For instance, the utility function of a service composition can
be calculated with the quality attributes of each individual service operation in
the service composition (i.e., the utility of combining service operations). The
major problem with utility functions is that they can be extremely hard to de-
fine, as every aspect that influences the decision by the utility function must
be quantified. On the other hand, our approach offers an easy, effective, and
abstract way to define adaptation policies.

For example, the resolution for the B&NUnavailable context condition is as
follows: RB&NUnavailable = {(Barnes & Noble Books, Inactive), (Search Book,
Inactive), (Show Book Info, Inactive), (Show Related Books, Inactive), (Amazon
Books, Active), (Book Searching, Active), (Book Description, Active), (Related
Titles, Active), (Barnes & Noble Shopping Cart, Inactive), (Amazon Shopping
Cart, Active)}. Although the Barnes & Noble Shopping Cart may not be un-
available when B&NUnavailable occurs, RB&NUnavailable deactivates this func-
tionality and activates the Amazon Shopping Cart in order to respect requires
relationships in Figure 5. MOSKitt4SPL provides a resolution editor to ease
the specification of resolutions (see Figure 9).

In this work, we increase the expressiveness of resolutions with composite
context conditions (Ccomp), which can be defined as follows:

Ccomp = {(C1 ∨ C2) ∧ (C3 ∨ C4) ∧ . . . ∧ Cn}

Each Cn in the Ccomp represents a specific context condition. AND and
OR logical operators are used to connect each Cn. For example, the following
resolution deactivates the UPS Shipping functionality and activates the DHL
Delivery functionality:
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RUPSHiExecT ime∧DHLExeTimeLowerThanFedEX

This resolution is triggered when both context conditions occur. In case the
UPSHiExecTime context condition occurs, only one of two variant features can
be activated in the Shipment variation point (FedEX Express or DHL Delivery
in Figure 5). Therefore, the DHLExeTimeLowerThanFedEX context condition
is used to activate the DHL Delivery functionality when it has lower execution
time than the FedEX Express service operation.

Step 6: Generate Variability Model Configurations
The execution of a DSPL’s architecture, which describes a dynamic service

composition, can be abstracted as a highly connected state machine where states
are the possible variability model configurations and transitions the migration
paths among configurations. In order to facilitate the generation of variability
model configurations, we implemented in MOSKitt4SPL the functionality to
fully generate the implicit adaptation space as a state machine model from the
variability model and the set of resolutions. The generated adaptation space for
the running example can be downloaded from our website (Alférez et al., 2012).

Step 7: Verify the Variability Model and its Configurations
Manual reasoning of DSPLs is an error-prone, tedious and sometimes in-

feasible task (Benavides et al., 2005). Therefore, we propose to use CP to
help automate this reasoning task. In order to do so, we transform the fea-
ture model, the context model, and the constraints that relate them, into a
constraint program over finite domains. Details about the transformation rules
and an algorithm that transforms feature models into constraint programs can
be found in (Mazo et al., 2011). Details about the transformation of context
models into a constraint program and their relationships with variability models
are provided in (Sawyer et al., 2012). The composition model is not represented
as a constraint program because its relationships with the variability model are
implemented by means of the weaving model.

Once the variability model is transformed into a constraint program, the
model and its configurations can be automatically verified with a solver (Salinesi
et al., 2010). In this step we present four criteria to verify, at design time,
variability models intended to be used for dynamic adaptation: accuracy of the
variability model, non-existence of dead features, stability, and semi-aliveness.
If the verification process finds any anomaly in the variability model, it should
be fixed at design time to avoid the undesirable effects of these anomalies in the
service composition at runtime. The verification of the composition model and
the mappings between the variability model and the composition model are out
of the scope of this paper (cf. (Gröner et al., 2011, Van der Aalst et al., 2010)
for details).

We take advantage of GNU Prolog to implement our collection of verifi-
cation criteria by means of algorithms that avoid expensive computations and
reuse the precedent results to avoid wasting time in unnecessary operations
(Salinesi and Mazo, 2012). GNU Prolog is a programming language that
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includes a powerful constraint solver over finite domains. It uses similar algo-
rithms as other constraint programming solvers and the unification operation to
work with Prolog facts. GNU Prolog uses very efficient algorithms based on
consistency, propagation, and backtracking techniques. The non-determinism
used by GNU Prolog allows to calculate several solutions for the same con-
straint problem and obtain the best solution (based on several criteria, such
as computing time, number of backtracks, and a maximization function) that
satisfies the constraints.

1. Accuracy of the variability model
This operation verifies that the variability model is not void and has enough

variability to be considered a real variability model. On one hand, a void model
does not permit any legal configuration. On the other hand, a variability model
that allows only one legal configuration, is a model that has not enough vari-
ability to be considered a variability model; it is instead the model of one con-
figuration. In other words, this operation verifies that there are at least two
configurations that satisfy the constraints of the variability model. So far, two
alternative techniques have been proposed to implement this operation: 1) cal-
culating the number of configurations (Van den Broek and Galvão, 2009), and 2)
asking for two configurations that meet the constraints of the variability model
(Trinidad et al., 2008, Salinesi and Mazo, 2012). The former approach is un-
necessarily costly (if possible at all). In fact, there is no need to compute all
solutions to prove that the model has at least two solutions. To implement this
verification operation, GNU Prolog is queried for any two configurations.

Listing 2 shows the algorithm for this operation. If the variability model
is not void, the algorithm checks if the solver finds another valid solution and
produces a corresponding message. The execution of this algorithm on our
running example gives an answer, which says it is not void.

accuracy(VariabilityModel VM , Solver S) {
S.load(VM);
Answer1 = S.getOneSolution ();
If (Answer1 != FALSE) {

Write("The variability model is not void");
Answer2 = S.nextSolution ();
If (Answer2 != FALSE) {

Write("The variability model has enough variability ");
} Else {

Write("The variability model has only one valid
solution ");

}
} Else {

Write("The variability model is void");
}

}

Listing 2: Algorithm of the verification criterion for accuracy
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2. Non-existence of dead features
This operation verifies that there are not any dead features in the variabil-

ity model. A feature is dead if it cannot appear in any configuration of the
variability model. Features can become dead by: 1) the exclusion with another
feature appearing in all configurations (or core features) (Von der Massen and
Lichter, 2004, Trinidad et al., 2008, Van den Broek and Galvão, 2009); 2) the
exclusion and requires dependency, of a feature with another one, at the same
time (Von der Massen and Lichter, 2004, Van den Broek and Galvão, 2009); and
3) the feature or its attributes are wrongly constrained (e.g. < 1) (Mazo et al.,
2012).

In this verification operation, we assume the convention that a feature is
selected in a particular configuration when it is set to 1, and is not selected
when it is set to 0. Thus, in order to implement this operation, we evaluate if
each feature can take the value of 1 in any configuration, and if it is not the
case, the corresponding feature is dead. In order to find dead features, we query
GNU Prolog for one result where each feature is different to 0. Then, if the
solver finds a solution, we reuse these results to avoid querying features that we
already know (from the solution) are not dead.

Listing 3 shows the algorithm for this operation. First, this algorithm creates
a list of the features whose dead or non-dead condition is yet to be assessed
(DeadFeatureList). Then, it queries for a solution (based on features for which
we still ignore if they are dead or not) and sieves the selected (and thus alive)
elements from this list. The test is repeated until all alive features are sieved.

deadFeatures(VariabilityModel VM , Solver S) {
S.load(VM);
DeadFeatureList = all features in VM;
For (each feature F in DeadFeatureList) {

Solution = S.getOneSolution(F = 1);
If (Solution = FALSE) {

Write ("The feature " + F + " is dead");
} Else {

Erase F and all the other features
with values equal to 1,
which are obtained in
Solution from DeadFeatureList;

}
}

}

Listing 3: Algorithm of the verification criterion for non-existence of dead features

For example, in order to know if the Amazon Shopping Cart feature is dead
or not, it is sufficient to query the solver for a solution with Amazon Shopping
Cart = 1. The algorithm provides the following solution: E1 = [Shopping Cart
= 1, Amazon Shopping Cart =1...]. This result means not only that the Amazon
Shopping Cart feature is not dead, but also that the other features with values
equal to 1 are not dead. Therefore these features can be sieved from the list
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of dead features. The purpose of the DeadFeatureList is to reduce the number
of queries by reusing the results obtained from the solver. For instance, in our
running example only eight queries were necessary to evaluate all the features,
in contrast to 36 queries (there are as many queries as features in the variability
model).

3. Stability
This operation verifies that for every combination of context variable values

that represent a context, there is at least one legal configuration that satisfies
all the variability constraints. However, in complex systems there may be thou-
sands of possible configurations (Khan et al., 2008), which can lead to config-
urations that are mutually inconsistent, contradictory, or simply unachievable.
In our approach, features are represented as Boolean variables that can be sat-
isfied or not by variability dependencies and context values. If no configuration
exists that satisfies all the variability dependencies for a given context, the sys-
tems analyst either needs to rethink the context model or the variability model.
If there are several possible configurations for a particular context, the system
respects our stability verification criterion.

Listing 4 shows the algorithm for this operation. This operation activates
each possible combination of context variables (a context variable is activated
when its value is greater than 0) and queries the solver for one solution that
satisfies the extra constraints imposed by the activated context variables. No
finding a solution for a particular combination of context variables means that
the variability model cannot offer a valid configuration for the context at hand
and a corresponding message is shown to the user.

stability(VariabilityModel VM , ContextModel CM , Solver S) {
S.load(VM);
S.load(CM);
C1...Cn is the list of variables in CM;
Solution = S.getOneSolution(C1 >0,...,Cn >0);
If (Solution = FALSE) {

Write (VM + " is NOT stable for all the possible values
that can take the variables of "+ CM);

} Else {
Write (VM + " is stable for the combination of the

context variable values of "+ CM);
}

}

Listing 4: Algorithm of the verification criterion for stability

For example, let us suppose the following current configuration: E1 = [DHL
Delivery = 1, UPS Shipping = 0, FedEX Express = 0...]. All of a sudden,
there is a new context event: DHLDelivery_HasExecutionTime = 25,000 (all
the other context variables keep their current values). According to this infor-
mation, the following configuration constraint should be triggered: (DHLDeliv-
ery_HasExecutionTime > 20,000

∧
UPSShipping_HasExecutionTime < FedEX-

Express_HasExecutionTime) ==> (DHL Delivery = 0
∧

UPS Shipping = 1). In
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this case, UPS Shipping is 1 in the variability model (if UPSShipping_HasExecutionTime
< FedEXExpress_HasExecutionTime). In this example, the combination of con-
text variables results in a legal configuration that satisfies the variability con-
straints.

4. Semi-aliveness
This operation verifies whether or not the variability model is sensitive to

changes in the context (i.e., it verifies that the variability model is able to
respond to changes in the context). To this end, this operation verifies that
there is a way to change from one configuration C(E1) to another C(E2), such
that E1-E2 = [0, 0, 0, x, ... , 0] (i.e., when one context variable has changed its
value, the configuration should also change to adapt itself to the new context).
E is a given context represented as a tuple of N context variables, where each
variable takes a particular value of its domain, e.g. TransmissionRate = 2
Mbps. Thus, when a value of the tuple E1-E2 is equal to 0, it means that the
corresponding domain variables remain the same.

For instance, the current configuration of the variability model in Figure 5
changes to a new one when the B&NUnavailable context condition is accom-
plished (i.e., when the context changes). However, the variability model config-
uration does not have to change always when the context changes since the same
configuration can satisfy (even in an optimal way) the constraints induced by
the context and of course, those imposed by the variability model. We simulate
these changes, variable by variable, and produce the different configurations
when the context changes. Then, the systems analyst can define, according
to his or her expertise, the adaptation ability of the service composition and
corrects it if necessary.

Listing 5 shows the algorithm for the semi-aliveness criterion. However,
this operation is computationally complex because it combines the values of
a collection of variables. In order to improve its performance, we divide the
collection of context variables into partitions as small as possible. For instance,
in the case where context variables are Boolean, our algorithm searches for 2k
* n, instead of 2n solutions, where k is the maximum number of variables into
n partitions. Each partition corresponds to a collection of context variables,
which do not depend from the rest of context variables. For instance, two
partitions in our running example are as follows (each one corresponds to a
collection of related functionalities): Credit Card Payment Partition – Bank of
America Credit Card Payment, Wells Fargo Online, and Chase Banking; and
Invoice Delivery Partition – Email Invoice, SMS Invoice; Shipment Partition:
UPS Shipment, FedEX Express, DHL Delivery.

Let us suppose a current configuration when the Barnes & Noble Books fea-
ture is active (equal to 1) and the Amazon Books service is inactive (equal to 0).
Thus, the current configuration is as follows: E1 = [Barnes & Noble Books = 1,
Barnes & Noble Shopping Cart = 1, Amazon Books = 0, Amazon Shopping Cart
= 0, Related Titles = 0...]. At a certain moment, the system perceives that the
transmission rate of the Barnes & Noble Books service operations is inferior to 2
Mbps. In this case, the Amazon Books feature is activated (equal to 1) and the



4.1 Preparation Phase Steps 23

Barnes & Noble Books feature is deactivated (equal to 0), as represented in the
following configuration constraint: (TransmissionRate_BarnesAndNobleBooks <
2) ==> (Amazon Books = 1

∧
Barnes & Noble Books = 0). Thus, the new

configuration that is proposed by the solver is as follows: E2 = [Barnes & Noble
Books = 0, Barnes & Noble Shopping Cart = 0, Amazon Books = 1, Amazon
Shopping Cart = 1, Related Titles = 1...] 10. The difference between E1 and E2
can be calculated by taking the absolute value of each result ([1, 1, 0, 0, 0...] - [0,
0, 1, 1, 1...]). It produces the following list of results: [1, 1, 1, 1, 1...]. The sum
of this list of values is different from zero. This means that our running example
is sensitive to the changes in the context (decreasing transmission rate). It is
worth noting that when all possible changes in the context model are simulated,
and the solution that is given by the solver is always the same, the variability
model is insensitive to the context. The semi-aliveness operation also identifies
this problem.

semi -aliveness(VariabilityModel VM , ContextModel CM , Solver
S) {

S.load(VM);
S.load(CM);
Vector currentSolution = S.getOneSolution ();
For each Partition P in CM {

For each combination C of context variables values into
P {

Solution newSol = S.getOneSolution (C);
If (newSol != FALSE) {

Vector delta = currentSolution - newSol;
If(the sum of values of delta != 0){

Write ("The variability model is sensitive to the
Partition " + P);

currentSolution = newSol;
Exit from the current "For loop" and continue with

the next Partition;
}

} Else {
Write("The variability model is insensitive to the

Partition " + P);
}

}
}

}

Listing 5: Algorithm of the verification criterion for semi-aliveness

In case all the variables in the context and variability models are Boolean
(which is not the case in our running example), it is even possible to propose an

10. The Amazon Shopping Cart feature and the Related Titles feature are also activated
thanks to the following implication instruction: Amazon Books ==> Related Titles, Amazon
Books ==> Amazon Shopping Cart.
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improved algorithm. Instead of asking the solver for several solutions (until two
solutions differ on at least one context variable and one variability variable), it
is possible to find the first solution of a unique CSP. This algorithm is described
on our website (Alférez et al., 2012).

5. Dealing with Dynamic Adaptation Phase

An ad-hoc approach to build dynamic adaptive service compositions is to
use existing variability mechanisms (e.g. if-statements or method dispatch)
directly in the architecture. However, the arising complexity of dynamic adapt-
able software can limit the number of dynamic reconfiguration points to a few
well-defined ones due to the lack of appropriate approaches (Dinkelaker et al.,
2010).

In the Dealing with Dynamic Adaptation Phase, we reuse the knowl-
edge captured in variability models, which have proven useful in mass-production
domains (Coplien et al., 1998), to describe the variants in which the service
composition can be adapted. In response to changes in the context, the system
itself can query these models to determine the necessary modifications in the
service composition. Specifically, the use of variability models at runtime has
the following benefits:

– The modeling effort made at design time is not only useful for producing
the service composition but also provides a rich semantic base for auto-
nomic behavior during execution.

– The variability model is causally connected to the underlying service com-
position. Therefore, this model provides up-to-date information to drive
subsequent adaptation decisions.

– The same model representation that is used at design time is kept at run-
time. This avoids the need for technological bridges, making it possible to
apply the same technologies used at design time to manipulate variability
models at runtime.

The Model-Based Reconfigurator leverages variability models at runtime
for guiding dynamic adaptations of service compositions. When features are
activated or deactivated at runtime in the variability model due to changes in
the context, a DSPL architecture supports the dynamic service recomposition.
The Model-Based Reconfigurator is implemented with our Model-based
Reconfiguration Engine for Web Services (MoRE-WS) (Alférez and Pelechano,
2011a). MoRE-WS is an extension of MoRE (Cetina et al., 2009), which
has been successfully applied to the smart-home domain. Although MoRE
also uses variability models to guide dynamic adaptations, MoRE-WS extends
MoRE in two aspects: 1) in MoRE, adaptation policies are not verified ahead.
In this work, we use GNU Prolog at design time to detect problems in the
variability model and in its configurations; and 2) MoRE makes use of low-level
instructions for implementing and executing reconfiguration actions. Contrarily,
MoRE-WS executes reconfiguration actions in a higher abstraction level (i.e.,
at the composition model).
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5.1. Computing Infrastructure for Dynamic Adaptations

A computing infrastructure deals with the dynamic adaptation of service
compositions (see Figure 10). This infrastructure is based on the components of
IBM’s reference model for autonomic control loops (which is sometimes called
the MAPE-K loop) (IBM, 2006), namely Monitor, Analyze, Plan, Execute, and
Knowledge. In our case, the knowledge that is managed in this loop is based on
models at runtime. First, measurement instruments collect information from the
context of the service composition. In the Monitor component, this information
is processed by the Context Monitor. In the Analyze component, MoRE-WS
updates the context model with the observed context information and decides
if any context condition has been accomplished. If any context condition has
been accomplished, then an adaptation is requested. In the Plan component,
MoRE-WS executes adaptation policies that activate or deactivate features in
the variability model. The adapted configuration of the variability model is
used to automatically create a reconfiguration plan with the adaptation actions
to be carried out on the composition model. The adapted composition model is
dispatched to the Execute component. In this component, MoRE-WS provides
the mechanisms to map the elements in the adapted composition model to
WS-BPEL code fragments. The generated WS-BPEL code and other required
artifacts are deployed at runtime in the Execution Engine.

Service Composition

Monitor

gathers context data

Context Monitor

Analyze MoRE-WS

analyzes collected context data

Plan MoRE-WS
requests an adaptation

Execute
MoRE-WS

Execution Engine

dispatches the adapted 
composition model

executes changes

Variability Model

v

xy

t r

adapts

Figure 10: Computing infrastructure to deal with the dynamic adaptation of service compo-
sitions

In our previous research (Alférez and Pelechano, 2011a), we described how
the Context Monitor is implemented with SALMon (Ameller and Franch,
2008). In order to count on a constant representation of the context, MoRE-WS
periodically updates the context model according to the information that is col-
lected by SALMon. We propose the following strategy to avoid the saturation of
the system when several problematic context events arise in a tight time frame:
1) in each observation, MoRE-WS retrieves a list with an ordered sequence of
new context events (contEvent1, contEvent2, . . . , contEventn). It is possible to
retrieve an ordered sequence of context events because every context event has
a unique ascending identification number; 2) MoRE-WS sequentially evaluates
the set of context conditions (contCond1, contCond2, . . . , contCondn), which
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can be triggered by the set of context events. Therefore, only one adaptation is
triggered at a time for each collected problematic context event.

MoRE-WS uses the updated context model as a base to determine whether
or not any context condition has been accomplished. By means of the SPARQL
Protocol and RDF Query Language (SPARQL) 11, we have implemented the
following operations to modify the context model and reason about context
conditions: 1) the Insert Context Event operation updates the context model ac-
cording to new context events. This operation is implemented with the SPARQL
INSERT form, which inserts new triples in the RDF graph of an ontology. For
example, the following query inserts information about the availability of the
Barnes & Noble Books service operation: PREFIX web: <http://my.ontology#>
INSERT DATA {web: ’Barnes&NobleBooks’ web:isAvailable ’false’}; 2) the Evaluate
Context Condition operation evaluates if a context condition has been accom-
plished. This operation is implemented with the SPARQL ASK form to test
whether or not a query pattern (e.g. a context condition) has a solution. For
example, the following query evaluates the B&NUnavailable context condition:
PREFIX web: <http://my.ontology#> ASK { web:Barnes&NobleBooks web:isAvailable
’false’ }. When a context condition is TRUE, then MoRE-WS requests an
adaptation on the variability model.

In the following subsections, we focus on the Plan and Execute components,
where the variability model plays a fundamental role.

5.2. Planning the Adaptation

When an adaptation has been requested (i.e., after a context condition has
been accomplished), MoRE-WS carries out the following steps to plan the
adaptation of the service composition:

Step 1: Execute a Resolution
In this step, MoRE-WS looks for a resolution associated to a context con-

dition (or a composite context condition), which has occurred, from the set
of resolutions that have been defined at design time. Since EMF Model Query
(EMFMQ) 12 can be used to manipulate and update models at runtime, MoRE-
WS uses it to activate or deactivate features in a feature model at runtime
according to resolutions. EMFMQ provides an API to construct and execute
query statements in a SQL-like fashion. For instance, in Listing 6, the state of
the model element that matches the featureID is set to either active or inactive.

In order to realize the new configuration of the variability model to transit to
after a resolution has been applied, MoRE-WS uses the representation of the
adaptation space (which has been generated at design time as a state machine).
As a result, MoRE-WS has full control of the different possible variability
model configurations and the transitions among them.

11. http://www.w3.org/TR/rdf-sparql-query/.
12. http://www.eclipse.org/modeling/emf/.
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UPDATE statement =
new UPDATE(
new FROM(resource.getContents ()),
new WHERE(new EObjectAttributeValueCondition(

featureModelPackagePackage.eINSTANCE.getID (),
new StringValue(featureID))),

new SET(setFeatureState ());

Listing 6: EMFMQ operation for updating a feature’s state

Step 2: Generate a Reconfiguration Plan
In this step, MoRE-WS creates a reconfiguration plan, which contains a set

of reconfiguration actions to adapt the composition model according to the new
configuration of the feature model (which has been modified by a resolution).
Reconfiguration actions are stated as composition model increments (CM4)
and composition model decrements (CM∇). These operations take a new con-
figuration of the variability model as input, and they calculate the modifications
to the composition model by adding (CM4) or removing (CM∇) variants from
the base composition model. The modified composition model will eventually
cause the adaptation of the WS-BPEL code that orchestrates the service oper-
ations.

In order to generate reconfiguration actions, MoRE-WS queries the weaving
model to realize the mappings between the features that are active in the new
configuration of the feature model and their related BPMN elements. In this
way, a given service operation, which is represented in the composition model,
will be invoked in the adapted service composition if and only if its related fea-
ture in the feature model configuration is active. That is, the composition model
is adapted through the activation or deactivation of features. The queries on the
weaving model are carried out by means of EMFMQ (Alférez and Pelechano,
2011a).

For example, when MoRE-WS applies RB&NUnavailable to the initial con-
figuration of the running example (depicted in Figure 1), the resulting reconfig-
uration plan is the following: CM∇ = {Barnes & Noble Books variant, Barnes
& Noble Shopping Cart variant} and CM4 = {Amazon Books variant, Ama-
zon Shopping Cart variant}. These actions express how to reorganize elements
in the composition model to move from one configuration when the Barnes &
Noble Books composite service operation fails to another configuration when
this operation is replaced by the Amazon Books, Related Titles, and Amazon
Shopping Cart Web service operations (according to Figure 6).

Summarizing, Figure 11 shows the model adaptation process when a context
condition has been accomplished. Section a shows a fragment of the initial
variability model configuration in the running example. At a particular point
in time, the B&NUnavailable context condition is fulfilled. As a result, MoRE-
WS looks for a resolution to solve this situation and finds RB&NUnavailable

that triggers the activation and deactivation of features in the variability model
(section b). The application of this resolution causes the system to transit from
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a) Initial variability model configuration. Features in gray are active (configuration 0 ):
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b) New variability model configuration after RB&NUnavailable has been executed. Features
in gray are active (configuration 1 ):
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c) Modified composition model after a reconfiguration plan (CM4 , CM∇) has been
executed:
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Figure 11: Model adaptation process

configuration 0 to configuration 1. Finally, MoRE-WS creates a reconfiguration
plan and executes it to modify the composition model (section c).

5.3. Executing the Adaptation

In order to materialize the changes at the composition model level into the
running service composition, this phase is divided into two aspects: 1) MoRE-
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WS provides the mechanisms to map BPMN variants to WS-BPEL code frag-
ments. These fragments can be added or removed from the WS-BPEL compo-
sition schema, which orchestrates the service composition; and 2) MoRE-WS
deploys at runtime the generated WS-BPEL code and other required artifacts
in the Execution Engine. These aspects are described in the following sub-
sections.

5.3.1. Mapping BPMN Variants to WS-BPEL Code Fragments
The creation of the WS-BPEL composition schema is guided by the informa-

tion contained in the adapted composition model. In our previous research, we
used the BABEL Java tool 13 to translate BPMN models into WS-BPEL code
(Torres et al., 2012). However, we discovered that model-to-model and model-
to-text transformations in BABEL are unfeasible at runtime because they take
around 95% of the total time required for the adaptation (from discovering a
context condition to reconfiguration) (Alférez and Pelechano, 2012a).

In this section, we propose a faster solution to reflect the changes in the com-
position model into WS-BPEL code. This solution is composed of the following
three steps (see Figure 12): 1) MoRE-WS uses EMFMQ to discover the vari-
ants that have been added to the base composition model. Each variant maps
to a WS-BPEL code fragment, which is stored in a repository (i.e., a directory);
2) MoRE-WS selects the set of WS-BPEL code fragments, which map to the
variants that have been used; and 3) MoRE-WS injects the WS-BPEL code
fragments into variation points in the WS-BPEL template. These variation
points (e.g. Shopping Cart in gray) can be implemented with different variant
WS-BPEL code fragments (e.g. with code that invokes the Barnes & Noble or
the Amazon Shopping Cart service operations). The WS-BPEL template also
indicates commonalities (e.g. Payment Calculator) that do not vary at runtime
and are common to all the versions of the service composition.

5.3.2. Hot Deployment
After the WS-BPEL template has been filled up with WS-BPEL code frag-

ments, MoRE-WS creates a deployment directory for all the relevant deploy-
ment artifacts. This directory contains the deployment descriptor (an XML
file), the composition schema (i.e., the filled WS-BPEL template), and the Web
Services Description Language (WSDL) files, which describe the functionality
offered by the Web services. This directory is put into the Web application di-
rectory of the Apache Orchestration Director Engine (Apache ODE) 14. Apache
ODE was chosen as the Execution Engine because it is compliant with WS-
BPEL and offers mature hot-deployment support. Instead of extending the
functionality of the WS-BPEL engine, our approach is transparent to the en-
gine (i.e., it is unchanged). Therefore, our approach could be used with other
WS-BPEL engines.

13. http://www.bpm.scitech.qut.edu.au/research/projects/oldprojects/babel/tools/.
14. http://ode.apache.org/.
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Figure 12: Mappings between BPMN variants and WS-BPEL code fragments

We have implemented a versioning strategy for the deployment directory
to prevent Apache ODE from deleting all the running instances when a new
composition schema is deployed. To this end, a new deployment directory with
an increasing version number is deployed with every dynamic adaptation. New
instances run according to the composition schema in the directory with the
latest version. Figure 13 shows MoRE-WS and Apache ODE consoles during
a dynamic adaptation according to RB&NUnavailable.

The dynamic adaptation of composition schema versions is one side of the
coin. The other side is the dynamic adaptation of running instances. This is not
an easy task since each instance may be running a different operation at the same
time. For example, some instances are almost finishing their execution while
others are just starting. Instead of migrating all instances to apply changes, we
propose a set of strategies to decide whether or not instances should migrate to
new versions of the composition schema (Alférez and Pelechano, 2012a). This
is an important aspect because uncontrolled instance migration will lead to
inconsistencies or errors (Weber et al., 2008). The migration of instances from
an old composition schema to a new one is carried out when it is safe to do
so. That is, only those instances are migrated which are compliant with the old
version of the composition schema (Weber et al., 2008). Specifically, an instance
I is compliant with a composition schema S, if the current execution history of
I can be created based on S (Rinderle et al., 2004). All other instances remain
running according to the old version of the composition schema. In our case,
the execution history of every I is managed at the composition model level.
Therefore, in addition to indicating the workflow to be followed by the service
composition, the composition model keeps the updated information about the
activity (BPMN task or subprocess) or event (start or end event) that is being
executed.
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Figure 13: MoRE-WS and Apache ODE consoles during a dynamic adaptation

6. Framework Demonstration

We created a video demonstration of our framework (Alférez et al., 2012).
In this demonstration, MoRE-WS used the non-trivial variability model in our
running example (with 36 features and five variation points) to guide two dy-
namic adaptations when the B&NUnavailable and the UPSHiExecTime context
conditions are fulfilled in a tight time frame: three milliseconds. Figure 14 shows
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the UML deployment diagram that depicts the computing infrastructure that
was used in this demonstration. The Web services ran on Apache Axis2 15 ver-
sion 1.6.1, which was deployed as a WAR (Web archive) distribution on Apache
Tomcat 16 version 7.0.8. The hot deployment was carried out by MoRE-WS on
Apache ODE version 1.3.5, which was deployed on a second instance of Apache
Tomcat as a WAR distribution. The demonstration was carried out on a PC
with an Intel Core 2 Duo 2.0 GHz processor, 4 GB RAM, Ubuntu version 10.04,
and Kernel Linux version 2.6.32-36-generic.

Figure 14: UML deployment diagram for the demonstration

7. Evaluation

In this section, we describe the evaluation results of our framework. Among
the types of investigations (strategies), we chose to carry out experiments as the
empirical investigation strategy. An experiment in software engineering is an
empirical inquiry that manipulates one factor or variable of the studied setting
(Wohlin et al., 2012). In order to develop the evaluation metrics, we used the
Goal/Question/Metric (GQM) method (Basili et al., 1994). The GQM method
was chosen because measurement is defined in a top-down fashion, from goals
to metrics.

The GQM models that guided the evaluation are described in the following
subsections. Each GQM model supports key aspects of our contribution (see
Section 1.2). Since our contribution spans from design time to runtime, it was
necessary to answer research questions related to these two phases. Regarding
design time, the GQM models in Section 7.1 answer research questions that
are related to generation efficiency and complexity reduction of the adaptation

15. http://axis.apache.org/axis2/java/core/.
16. http://tomcat.apache.org/.
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space. Moreover, Section 7.2 answers research questions that are related to the
verification of the variability model and its configurations: anomalies reduction
and verification efficiency. Regarding runtime, the GQM models in Section 7.3
answer research questions that are related to model-driven dynamic adaptations:
efficiency and capacity to avoid saturations under stress circumstances.

7.1. GQM Models that are Related to the Adaptation Space
This subsection presents two GQM models that have helped us to evaluate

two aspects of our approach: generation efficiency and complexity reduction of
the adaptation space.

GQM Model 1: Table 1 describes the GQM model for the following goal:
“Efficient generation time of variability model configurations from the systems
analyst’s viewpoint.” Efficiency is considered as performing or functioning in the
best possible manner with the least waste of time and effort. In order to answer
Q1, we used the variability model in our running example with 36 features
(M1) and a set of nine resolutions specified for this model (M2). With this
information, MOSKitt4SPL generated an adaptation space with 40 variability
model configurations (M3) and 360 transitions among configurations (M4) in
less than three seconds (M5) – find additional details about this experiment on
our website (Alférez et al., 2012). The manual creation of an adaptation space
with these proportions is clearly unfeasible.

Goal

Purpose Efficient

Issue generation time of

Object variability model configurations

Viewpoint from the systems analyst’s viewpoint

Question Q1 What is the required time to generate the
adaptation space?

Metrics M1 - M5 (M1) number of features in the variability
model, (M2) number of resolutions, (M3)
number of generated variability model
configurations, (M4) number of generated
transitions among variability model
configurations, and (M5) generation time of
the adaptation space

Table 1: GQM model 1 for the “efficient generation time of variability model configurations
from the systems analyst’s viewpoint” goal

GQM Model 2: Table 2 describes the GQM model for the following goal:
“Reduce the complexity of the adaptation space from the systems analyst’s view-
point.” Q2 can be answered by looking at the variability model in our running
example with 36 features (M6) and nine resolutions (M7) specified for this
model. This small model and a small set of resolutions describe a large adap-
tation space with 40 variability model configurations (M8) and 360 transitions
among configurations (M9) (Alférez et al., 2012). In our previous work (Cetina
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et al., 2009) we introduced a variability model containing 18 features (M6) and
three resolutions (M7) specified for this model. This model and the set of res-
olutions represented more than 200,000 variability model configurations (M8)
and more than 600,000 possible transitions among configurations (M9). There-
fore, it is possible to say that variability models can reduce (or hide) much of
the complexity in the definition of the adaptation space from the point of view
of systems analysts. Variability models can provide an intensional rather than
extensional description of each possible configuration of the service composition.

Goal

Purpose Reduce

Issue the complexity of the

Object adaptation space

Viewpoint from the systems analyst’s viewpoint

Question Q2 Do a small variability model and a set of
resolutions can be used to describe a large
adaptation space?

Metrics M6 - M9 (M6) number of features in the variability
model, (M7) number of resolutions, (M8)
number of generated variability model
configurations, (M9) number of generated
transitions among variability model
configurations

Table 2: GQM model 2 for the “reduce the complexity of the adaptation space from the
systems analyst’s viewpoint” goal

7.2. GQM Models that are Related to Verification

This subsection presents the GQM models that have guided us to evaluate
aspects related to the verification of the variability model and its configurations.
In order to evaluate the GQM models in this section, we implemented and
tested the verification operations under the following conditions: PC with 32
bit Windows Vista, AMD Turion 64 bits X2 Dual-Core Mobile RM-74 2.20 GHz
processor, 4 GB RAM, and GNU Prolog 1.3.0.

GQM Model 3: Table 3 describes the GQM model for the following goal:
“Reduce anomalies in the variability model and in its configurations from the
systems analyst’s viewpoint.” In order to answer Q3 and Q4, we evaluated 47
models, out of which 45 were taken from the SPLOT repository (Mendonca
et al., 2009). The other two models were developed during industry collabora-
tion projects (Lora-Michiels et al., 2010). The number of features in the models
is distributed as follows (M10 and M12): 30 models contained from nine to
49 features, four models from 50 to 99 features, four models from 100 to 999
features, and nine models from 1,000 to 2,000 features. The variability models
covered various domains such as insurance, entertainment, Web applications,
home automation, search engines, and databases (Mazo, 2011). Experiments
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showed that our verification approach identified 100% of the anomalies (M11)
with 0% false positives (M13).

Goal

Purpose Reduce

Issue anomalies in the

Object variability model and its configurations

Viewpoint from the systems analyst’s viewpoint

Question Q3 What is the percentage of identified
anomalies?

Metrics M10 - M11 (M10) number of features in the variability
model and (M11) percentage of identified
anomalies

Question Q4 What is the percentage of false positives?

Metrics M12 - M13 (M12) number of features in the variability
model and (M13) percentage of false
positives

Table 3: GQM model 3 for the “reduce anomalies in the variability model and in its configu-
rations from the systems analyst’s viewpoint” goal

GQM Model 4: Table 4 describes the GQM model for the following goal:
“Efficient verification of the variability model from the systems analyst’s view-
point.” In response to Q5, the response time for each verification criterion is as
follows. We used the same variability models, with the same number of features
per model (M14), that were used to evaluate GQM Model 3:

– Accuracy of the Variability Model: The response time of this operation on
our benchmark takes an average of 0.8 milliseconds (M15).

– Non-Existence of Dead Features: For models from nine to 100 features,
our approach verified dead features in 3.79 milliseconds in average. For
models from 101 to 2,000 features, our approach took 3.45 seconds in
average (M16).

– Stability: The evaluation on our benchmark shows that it takes 0.9 mil-
liseconds in average to verify models between 9 and 100 variables and
16.2 seconds, in the worst case, to verify models between 100 and 2,000
variables (M17).

– Semi-aliveness: The performance of this verification criterion depends on
the number of partitions and the number of variables per partition. Let
us recall that a CSP is theoretically non-polynomial. However, modern
solvers use highly optimized algorithms that are able to solve these CSPs
efficiently (if needed, the programmer can help the solver with redundant
constraints, alternative modeling, heuristics, etc.). Our preliminary tests
show that the algorithm presented in Listing 5 scales well on our running
example: 6.2 seconds for seven partitions and four context variables per
partition (M18). Since we do not currently have an algorithm to find the
partitions, further experiments are required to test semi-aliveness in our
benchmark (we found partitions manually in our running example).
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Goal

Purpose Efficient

Issue verification of the

Object variability model

Viewpoint from the systems analyst’s viewpoint

Question Q5 What are the response times for each
verification criterion?

Metrics M14 - M18 (M14) number of features in the variability
model, (M15) average response time for the
Accuracy of the Variability Model criterion,
(M16) average response time for the
Non-existence of Dead Features criterion,
(M17) average response time for the
Stability criterion, and (M18) average
response time for the Semi-aliveness criterion

Table 4: GQM model 4 for the “efficient verification of the variability model from the systems
analyst’s viewpoint” goal

7.3. GQM Models that are Related to Dynamic Adaptations
This subsection presents two additional GQM models. These models have

allowed us to evaluate the following aspects about the dynamic adaptations
that are carried out by MoRE-WS: efficiency during dynamic adaptations and
capacity to avoid saturations under stress circumstances.

GQM Model 5: Table 5 describes the GQM model for the following goal:
“Efficient dynamic adaptation of service compositions from MoRE-WS’s view-
point.” In order to answer Q6, we carried out an experiment on the same PC
that is described in Section 6. We used the following randomly generated mod-
els: a MOSKitt4SPL feature model, an ATLAS Model Weaver weaving model,
and a BPMN composition model. These models started with one element and
they were populated with two hundred new elements each iteration up to 3,000
elements (M19).

In order to scale up this experiment, the number of features in the fea-
ture models exceeds the number of features in normal feature models found in
literature (Mazo, 2011). The following model operations were performed: get-
ting current configuration, getting service operations mapped to features, map-
ping composition model elements to WS-BPEL fragments, and updating feature
states. The first two operations are performed to calculate CM4 and CM∇.
The mapping composition model elements to WS-BPEL fragments operation is
carried out just before hot deployment. The updating feature states operation
sets feature states to active or inactive. Figure 15 shows the response time of
these operations (M20 - M25).

The getting current configuration operation exhaustively navigates a vari-
ability model configuration to look for active features. Although, the updating
feature states operation also navigates the whole variability model to set the
state of features, this operation gets significant different results. This is because
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Goal

Purpose Efficient

Issue dynamic adaptation of

Object service compositions

Viewpoint from MoRE-WS’s viewpoint

Question Q6 Is MoRE-WS efficient to carry out the
dynamic adaptation of service compositions?

Metrics M19 - M25 (M19) number of elements in models, (M20)
response time of service composition
increment, (M21) response time of service
composition decrement, (M22) response time
of getting the current configuration, (M23)
response time of updating feature states,
(M24) response time of getting service
operations mapped to features, and (M25)
response time of mapping composition model
elements to WS-BPEL fragments

Table 5: GQM model 5 for the “efficient dynamic adaptation of service compositions from
MoRE-WS’s viewpoint” goal

the updating feature states operation has to make persistent the model changes.
This operation is implemented by an UPDATE statement of the EMFMQ and
a call to the save resource of the EMF API. The getting service operations
mapped to features operation was slow. This is because of the Atlas Model
Weaver metamodel. This metamodel specifies links between models by means
of two levels. To get a BPMN element linked to a feature, first the operation
has to navigate from an ElementEqual meta-element to a RightElement
meta-element. Second, from this RightElement the operation has to navi-
gate to an ElementRef meta-element. Furthermore, these two steps have to
be performed for each link. Finally, the mapping composition model elements
to WS-BPEL fragments got a good response time thanks to the strategy for
managing variant WS-BPEL code fragments. Overall, even with a model popu-
lation of 30,000 elements in each model, the model operations had a good time
response (< 300 milliseconds) that can be considered fast in the domain that
we are addressing.

MoRE-WS carries out linear search on composition models to find out either
the elements to be adapted in running instances are ahead or behind the current
activity or event (Alférez and Pelechano, 2012a). Therefore, the performance
of this operation does not depend on the model manipulation itself, but on
the search algorithm. The worst case performance scenario is that MoRE-
WS needs to loop through the entire model: O(n). Further details about the
performance evaluation during dynamic adaptation of running instances can be
found in (Alférez and Pelechano, 2012a).

GQM Model 6: Table 6 describes the GQM model for the following
goal: “Avoid saturation under stress circumstances of MoRE-WS from the
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Figure 15: Response time of model operations

systems analyst’s viewpoint.” In order to answer Q7, we have manually in-
jected 100 problematic context events (contEvent1...100) into an execution log
(M26), which is read by the Context Monitor. These events are separated
by time frames of one to five milliseconds (M27). In the fist run (or obser-
vation), MoRE-WS retrieved the 100 problematic events at once because it
queries the information collected by the Context Monitor every five seconds
(M28). Then, MoRE-WS evaluated five context conditions (contCond1...5)
that could be affected by these events (M29). Since context conditions are
evaluated in sequence (a dynamic adaptation for contCond1 is always triggered
before an adaptation for contCond2), we did not experience performance de-
crease in M30 (i.e., the response time is similar to the response time without
stress). Only one dynamic adaptation is carried out at a time. An additional
scenario is when several context events in a particular set of observed events
may affect a particular context condition (e.g. contEvent1 and contEvent85
can affect contCond3). Since MoRE-WS triggers a dynamic adaptation first
for contEvent1 than for contEvent85, then contEvent85 is discharged (i.e., a
dynamic adaptation has been already triggered to solve contCond3). We can
conclude that MoRE-WS works well under stress circumstances when several
problematic context events arise in tight time frames.

7.4. Discussion

By defining activation or deactivation of features by means of model-based
resolutions, the adaptation paths between different variability model configura-
tions (which describe service composition configurations) can be expressed in a
declarative manner without the need for an exhaustive definition. The time to
generate the adaptation space is short. The verification process finds anomalies
and avoids false positives in variability models and its configurations at design
time; hence, problematic situations can be fixed at design time to avoid negative
effects at runtime. Also, the performance of our four verification criteria was
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Goal

Purpose Avoid

Issue saturation under stress circumstances
of

Object MoRE-WS

Viewpoint from the systems analyst’s viewpoint

Question Q7 Does MoRE-WS have a good performance
under stress circumstances?

Metrics M26 - M30 (M26) number of problematic context events,
(M27) time frame between problematic
context events, (M28) frequency to observe
the context, (M29) number of context
conditions that could be affected by arising
context events, and (M30) response time
under stress circumstances

Table 6: GQM model 6 for the “avoid saturation under stress circumstances of MoRE-WS
from the systems analyst’s viewpoint” goal

notable. At runtime, our model-driven solution is efficient when dealing with
dynamic adaptation of service compositions, even under stress circumstances.

The variability models used in the experiments for GQM models 1, 2, 5,
and 6 were auto-generated. The variability models that were used in the ex-
periments related to GQM models 3 and 4 came mostly from other studies.
Therefore, we do not have enough empirical results yet about evaluating the
human effort required at design time to create the variability model and the
other models contained in our proposal. Nevertheless, we think our approach
does not exponentially increase human effort at design time because this phase
is fully tool-supported. Specifically, the provided tools support the creation of
models and adaptation policies, and the automation of key tasks such as the
generation and verification of variability model configurations. As part of our
future work, we expect to quantify this effort in real service compositions at the
Valencian Regional Ministry of Infrastructure and Transport 17.

8. Related Work

Our research is placed at the intersection of dynamic adaptation of services
compositions, variability modeling, DSPL engineering, and verification of self-
adaptive systems. Related work in these areas is described in the following
subsections.

17. http://www.moskitt.org/eng/moskitt0/.
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8.1. Dynamic Adaptation of Service Compositions

Several research works related to dynamic adaptation of service composi-
tions have tended to implement variability constructs at the language level.
For example, SCENE (Colombo et al., 2006) extends WS-BPEL with Event
Condition Action (ECA) rules that define consequences for conditions to guide
the execution of binding and rebinding self-reconfiguration operations. VxBPEL
(Koning et al., 2009) is an adaptation of WS-BPEL that allows variation points,
variants, and configurations to be defined for a process in a service-centric sys-
tem. In (Baresi and Guinea, 2011), monitoring directives are expressed in
the Web Service Constraint Language, and recovery strategies, which follow
the ECA paradigm, are stated in the Web Service Recovery Language. Also,
Aspect-Oriented Programming (AOP) has been proposed in several works for
self-adaptive service compositions (Narendra et al., 2007, Sonntag and Karas-
toyanova, 2011, Moser et al., 2008). We argue that implementing and managing
dynamic adaptations at the language level can become complex, especially in
large systems. Our solution can guide dynamic adaptations at a more abstract
level with models at runtime.

Another trend uses the Semantic Web to support capability-based discov-
ery and interoperation of Web services at runtime. For instance, the DARPA
Agent Markup Language for Services (DAML-S) tries to close the gap between
the Semantic Web and Web services (Paolucci and Sycara, 2003). Services use
the Semantic Web to support capability-based discovery and interoperation at
runtime. Although Semantic Web services can use a DAML-S process model
and grounding to manage their interactions with other Web services, variability
management is not made evident in this model. More recent works focus on
discovering Web service operations using the Semantic Web (Srinivasan et al.,
2005, Klusch and Kapahnke, 2010, Pahl et al., 2011). Web services are semanti-
cally described in terms of capabilities offered. Then, inferences are performed
to match the capabilities requested with the capabilities offered. A reconfig-
uration plan can be generated with the discovered services (using for example
Artificial Intelligence (Moore et al., 2008)). We use an ontology to realize if aris-
ing context events can cause dynamic adaptations (similarly to (Bandara et al.,
2009)). However, discovering Web service operations at runtime falls outside
the current view of our approach.

In contrast to our approach, which addresses the reasoning of dynamic adap-
tation of service compositions through models, at both design time and runtime,
several research covers self-adaptations only at runtime through implementation
mechanisms (Erradi and Maheshwari, 2005, Cardellini et al., 2010, Mosincat and
Binder, 2008).

We highlight four relevant related approaches that use models at runtime to
support dynamic adaptation of service compositions. First, DySOA (Bosloper
et al., 2005) is a tool that offers components for monitoring and reconfiguring
Web service-centric systems. Even though models are used by these compo-
nents for context analysis, QoS determination, and variability, these models
and their related reconfiguration mechanisms at runtime are not presented in a
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detailed way. QoSMOS (Calinescu et al., 2011) is a tool-supported framework
for the QoS management of self-adaptive, service-based systems that combines
existing techniques and tools. As in our case, QoSMOS autonomic architec-
ture is based on the MAPE-K loop. It combines formal specification of QoS
requirements, model-based QoS evaluation (through analytic solving of Markov
Models), monitoring and parameter adaptation of the QoS models, and plan-
ning and execution of system adaptation. QoSMOS is focused on the translation
of high-level QoS requirements into probabilistic temporal formulas and on the
formalization of these QoS requirements. SASSY (Menasce et al., 2011) is a
model-driven framework that provides runtime adaptation of service composi-
tions in response to changing operating conditions. In this research, it is not
clear how the service coordination logic can be deployed in a WS-BPEL en-
gine. In (Morin et al., 2008), the authors propose combining model-driven and
aspect-oriented techniques to support runtime variability from requirements to
execution. Aspects are dynamically composed to produce configuration mod-
els, and these models are then used to generate the scripts needed to adapt a
running system from one runtime configuration to another. However, this solu-
tion is not focused on Web service compositions. Moreover, in contrast to our
approach, the adaptation model that captures the information about dynamic
variability is presented without many implementation details.

The approaches that are presented above make evident the trend towards
implementing dynamic adaptation of service compositions at the language level,
which can be complex and time-consuming, and with low-level implementation
mechanisms. The aforementioned model-driven approaches miss hot deployment
in enterprise WS-BPEL engines.

8.2. Variability Modeling
There are several approaches that deal with modeling variability in service

compositions that support BPs (Nguyen et al., 2011, Sun et al., 2010, Hadaytul-
lah et al., 2009, Razavian and Khosravi, 2008). In this section we describe three
relevant research works in this area. PESOA (Puhlmann et al., 2005) abstracts
the BP in an unique model with a set of annotations that identify variable be-
havior. C-EPC (Rosemann and Van der Aalst, 2007) is a language extension to
configure reference BP models that formalize recommended practices for specific
domains. A single BP model contains configurable elements, alternatives that
depend on the context of use, and context conditions. In (Gottschalk et al.,
2008), the authors propose an approach to identify configurable elements of a
workflow modeling language (such as YAWL, WS-BPEL or SAP WebFlow) with
opportunities for predefining alternative model versions within a single workflow
model. Although the aforementioned works have inspired ours, they are limited
to variability modeling. Our approach goes a step forward by leveraging mod-
els at runtime to guide dynamic adaptations. Also, they integrate all possible
process variants in a single model. It results in large and difficult-to-understand
models. On the contrary, we propose to reason about variability separately.
An approach in a similar direction proposes a separated variability descriptor
document to describe the variability points and their properties and points into
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the file to be customized (Mietzner and Leymann, 2008). This document makes
up the Software as a Service (SaaS) process layer of an application. Instead of
proposing the creation of a new variability descriptor, our approach reuses the
proven potential of widely-used feature models to describe variability.

8.3. Dynamic Software Product Lines

A recent approach named Service-Oriented Product Line (SOPL) (Lee and
Kotonya, 2010) has proven the viability of a DSPL application domain built on
services and a service-oriented architecture. However, in spite of the growing
amount of research related to context-aware self-adaptive services using SPL
principles, it does not focus on supporting dynamic adaptation of Web service
compositions. Some relevant related approaches are presented as follows.

In (Lee and Kang, 2006), Lee et al. propose a systematic method to develop
dynamically reconfigurable core assets and a reconfigurator that monitors and
manages product configuration at runtime. This method remains at the general
level with respect to the models employed. Moreover, their specifications of
reconfiguration actions are not as flexible as our model-based adaptation poli-
cies. This method has been applied to the development of home service robot
control software. In (Hallsteinsen et al., 2006), Hallsteinsen et al. present the
MADAM approach to build adaptive systems as component-based systems fam-
ilies with variability modeled explicitly as part of the family architecture. They
target distributed applications accessed through hand-held networked devices
which have to adapt to context changes. In (Parra et al., 2009), Parra et al.
propose a Context-Aware Dynamic Service-Oriented Product Line (DSOPL)
named CAPucine. CAPucine is based on a model-driven approach as ours is.
Their approach is divided into two different processes for product derivation.
In the first process, for every selected feature of the product family, there is an
associated asset that corresponds to a partial model of the product itself. These
models get composed and transformed to generate the product. The second
process relates to dynamic adaptation. FraSCAti, which is a Service Compo-
nent Architecture (SCA) platform with dynamic properties, enables binding and
unbinding of components at runtime. SCA domains are built on single-vendor
infrastructure, while Web services are not. This fact coupled with the popular-
ity of Web services makes it relevant to propose self-adaptation mechanisms for
Web service compositions.

The aforementioned approaches show that the focus has been placed on
methods and mechanisms for runtime adaptability of services in areas such as
domotics and robotics but not specifically on Web service compositions. In
contrast to some of these works, we make an intensive use of variability models
as fundamental drivers for dynamic adaptations.

8.4. Verification of Self Adaptive Systems

Calinescu et al. (Calinescu et al., 2012) and Salifu et al. (Salifu et al., 2012)
explore the self-adaptation paradigm based in the relations among contextual in-
formation (W ), requirements (R) and the specifications of the required solution
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(S ) as a logic entailment W, S |= R (which means that the use of specifica-
tion S in context W ensures the satisfaction of the requirements R). Both ap-
proaches explore how to extend (Zave and Jackson, 1997) to verify self-adaptive
systems. On one hand, (Calinescu et al., 2012) outlines a range of complemen-
tary approaches that use formal verification techniques in runtime scenarios and
presents several research challenges about verification of self-adaptive systems
(SASs). For instance, one of the main challenges is to develop a “repertoire
of techniques that provides timely reaction to detected violations of the require-
ments” of SASs. On the other hand, (Salifu et al., 2012) presents an approach
that enables to: 1) represent and reason about changes in the physical environ-
ment of software systems and assess their impact on requirements satisfaction;
and 2) specify monitors and switchers that can detect changes and adapt in
response to requirements satisfaction violation. Salifu et al. follow the same
direction for monitoring described in (Wang et al., 2009): to encode monitoring
and switching problems into propositional logic constraints that are analyzed
with a SAT solver. Wang et al.’s approach (Wang et al., 2009) is suitable for
analyzing internal state changes of software systems. However, physical context
changes are not analyzed. In another research (Sama et al., 2008), rule-based
analysis algorithms operate on extended finite state machines that detect po-
tential inconsistencies among the paths of the states under varying situations
corresponding to different switches. However, their treatment does not handle
conditions for monitoring problems.

Other research works (Bencomo et al., 2008, Lee and Kang, 2006, Cetina
et al., 2009, Sawyer et al., 2012) use variability models to specify the legal com-
bination of requirements to satisfy adaptation needs elicited from a monitoring
process. However, they neither deal with verification of SASs nor focus on
service compositions.

Autili et al. (Autili et al., 2009) presents the PLASTIC approach to support
context-aware adaptive services. In PLASTIC, adaptations happen at discovery
time. Therefore, the deployed application is customized with respect to the
context at binding time but it does not adapt at runtime. Our approach goes
a step further with dynamic adaptations guided by variability models, and by
verifying service composition configurations at design time.

Iftikhar and Weyns (Iftikhar and Weyns, 2012) present a case study in which
model checking is used to verify behavioral properties of a decentralized SASs.
In order to model the main processes of the system, they use timed automata,
and for the specification of the required properties they use timed computation
tree logic. Also, they propose to use the Uppaal tool (Behrmann et al., 2006) to
specify the system and verify flexibility and robustness properties. In contrast,
our approach is based on variability models and CP-oriented verification crite-
ria to avoid the combinatorial explosion of states that limits the use of model
checking on large variability models.

Xu et al. (Xu et al., 2012) identify five categories of errors in SASs at
runtime: predictability error, stability error, reachability and liveness error,
and consistency error. They propose the ADAM approach, which takes context
changes from the environment, and adapts an application based on user-defined
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rules for each one of their applications. Then, ADAM can run these user-
specified rules, automatically report errors of each one of the aforementioned
categories when the rule is violated at adaptation-time, and helps to identify
potential defects in the rule design. Our approach is different to this one in
two aspects: 1) we use a variability model to represent the adaptation rules of
several configurations at the same time (i.e., as a family of configurations) and
not in rules that are specified for each configuration; and 2) our approach tries
to identify defects at design time to allow designers to correct them before the
system is released and to avoid runtime verification, which hinders correction,
and in most of cases does not scale to industrial models (Tamura et al., 2012).
Further works about verification of SASs are discussed in (Weyns et al., 2012,
Villegas et al., 2011, Tamura et al., 2012).

9. Conclusions and Future Work

In this paper, we proposed a solution based on semantically rich variability
models to support the dynamic adaptation of service compositions. In order to
face problematic context events, our MoRE-WS tool activates and deactivates
features in a variability model at runtime. New variability model configurations
are used to modify a composition model that abstracts the service composition.
Changes in the composition model are reflected into the service composition by
adding or removing fragments of WS-BPEL code that are deployed at runtime.
The variability model and its possible configurations are verified at design time
with CP to reach optimum adaptations.

The use of variability models in our approach has the following advantages:
1) instead of programming complex scripts to describe adaptation policies, easy-
to-understand and technology-independent variability models can be used to
express dynamic adaptations with abstract concepts over the underlying tech-
nologies; 2) variability models can hide the complexity of the adaptation space,
thus facilitating the reasoning of dynamic adaptations; and 3) the verification of
the variability model and its configurations at design time can avoid inconsistent
service composition adaptations.

As future work, we will extend our approach to be used in the open world,
in which the service composition should react to continuous and unanticipated
changes in complex and uncertain contexts. We have preliminary results in
this area in which variability models are able to evolve at runtime for better
functioning and system “survival” (Alférez and Pelechano, 2012b). Ontologi-
cal reasoning is extended in the open world to realize the requirements that
can be affected by arising unknown context events (unforeseen at design time).
To this end, we use forward chaining to evaluate arising context facts against
rule premises. Accordingly, we will extend the set of verification operations at
runtime to avoid inconsistent service recompositions in the open world. For
example, settling time will be verified to avoid overheads, and changes in the
service composition when dealing with unknown context events will be verified
during execution to avoid a negative impact in the expected requirements.
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