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Université Paris 1 and CRI,

{Rebecca.Deneckere,Daniel.Diaz}@univ-paris1.fr

Abstract—Declarative techniques such as Constraint Program-
ming are very useful in modeling complex requirements. They
have the added benefit of being executable specifications and,
when properly tuned, high-performance ones.

In this paper we argue that Information Systems ought to
include constraint-based techniques in their design and imple-
mentation. We support this claim by introducing tools based on
constraint programming, which we apply to an actual use-case:
the academic timetable construction and maintenance problem,
as developed at the University of Évora. The system we built was
implemented using the GNU Prolog language.

Moreover, Constraints have the potential to describe global
properties that a model must observe, which makes them a
semantically very interesting extension to the capabilities of
present model-driven techniques and tools.
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I. INTRODUCTION

UML [5] has brought forward a collection of method-
ologies for designing incremental and scalable information
system applications. Its different facets have struck an effective
balance between expressiveness, incrementality and levels of
abstraction, to the point where it sets the grounds for data
modeling and executable code generation.

Large scale information systems may be specified, modeled
and designed using UML-based instruments such as Visual
Paradigm or the Eclipse UML Tools. These techniques and
tools greatly simplify and improve the reliability of IS de-
sign and maintenance. However, one aspect remains daunting
from the UML standpoint: how to establish relations between
seemingly independent components of a system, in such a
way as to ensure the correctness of the global state? It is
possible to specify integrity constraints, rules which control
and aim to guarantee data validity, but these appear as checks
or validations: the state generation and mutation process cannot
directly benefit from this sort of annotation as it is not
generative.

There have been several attempts to specify and implement
higher-level frameworks, such as the Object Constraint Lan-
guage (OCL), with the intention of embedding these into the
UML modeling formalism, most notably to be able to make
assertions about the model being described. OCL, however, is
most of the time dead code: there are hardly any implementa-
tions thereof and it is not commonly used in modeling tasks.

Generically, constraints have long been recognized as a
useful concept in modeling languages (eg. for requirements
engineering) but they are also used within regular applications,
in the role of combinatorial problem solver or optimizer. As
a consequence of its expressiveness and flexibility, Constraint
Programming (CP) has been successfully used for modeling
in several domains: [22], [13] air traffic flow management [6],
planning [11] or product-line models [18], [9], [19], to name
but a few. More than a decade ago, CP was even identified
by the ACM as “one of the strategic directions in computer
research” [3].

Constraint Logic Programming is a declarative technique
related to Constraint Programming, which adds the possibility
of constructing and driving the constraint solving process by
means of logic goal satisfaction.

Our claim is that constraints are useful in designing and
implementing information systems, and that the latter will ben-
efit significantly from being constraint-informed. To make and
illustrate the point, we shall be describing an actual running
example – the development of a timetabling application.

The declarativeness of Constraint Programming makes it
suitable for even the most complex modeling: constraints may
be thought of as a set of relations (e.g. equations), while
retaining an efficient runtime execution.

The rest of the paper describes the running example –
a University-wide timetabling information system – both its
structure and some implementation aspects, which we proceed
to critically analyze. We then describe the Constraint Program-
ming and the GNU Prolog system and continue with how
we took to modeling parts of the application with constraints.
Finally we put this work in context and make considerations
regarding further evolution.

II. A CASE STUDY: THE UNIVERSITY TIMETABLE
INFORMATION SYSTEM

A. The Information System
Timetabling is a difficult problem which must be dealt with

year after year, by every school or University. We now present
an extension of the Information System of the University of
Evora, related to the specification and deployment of timeta-
bles. As this functionality was not initially planned for in the
Information System, we set out to specify and implement it as
an independent subsystem.
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Fig. 1. Timetable information system model

The basic statement of the problem is rather simple: allocate
classrooms to course sessions satisfying obvious constraints
(only one course session per room at a given time, a lecturer
cannot be in two places at once). But in practice several
other requirements have to be taken into account. For instance,
some sessions need specific classroom specificities, features or
furniture. Because the University is physically dispersed, both
in and out of town, with buildings being up to 20 Km apart,
the transit time may become significant and must be taken into
consideration. It is also important to try and satisfy lecturers’
preferences (which can be diverse: a lecturer may prefer to
teach on a given weekday, or at a given location or a given
discipline, chalkboard vs whiteboard, etc.) Usually, these kinds
of constraints are not integrated into the timetable IS. Most of
the time, it is the person responsible for the timetabling who,

by knowing those preferences, tries to satisfy part of them. In
order to highlight this “knowledge” we decided to integrate
most of the timetable related information into the IS. Figure 1
presents the IS model using UML formalism. It is composed
of 3 main parts.

1. Educational information. The University offers several
degree programs (e.g., Bachelor of Computer Science). Each
degree includes a set of disciplines (e.g., UML modeling) that
a student enrolled in this degree program must attend over
the year. Each discipline is related to a given department and
consists in lectures, tutorials, etc. Each discipline can be taught
to several degrees: e.g., UML modeling is both optional on
the 3rd year of Bachelor of Computer Science (at semester
1) and mandatory on 1st year of Master Mathematics (at
semester 2). Each of these degree-specific disciplines gives rise
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to several course sessions. These course sessions can occur
several times per week. The total hours of a course session
can be divided into different lecturers. Moreover, a degree
may share courses with other schools and the classrooms are
considered a common pooled resource, shared by all courses.

2. Resources. The University is physically composed of a
set of buildings offering classrooms. A classroom has a type
depending on its specificities (e.g., amphitheater, for chemistry
work practice, etc.).

3. Timetabling Information. This last part includes needed
information for timetabling. A timetable unit of time is an
interval of 30 minutes. Hence, our weekly timeline goes from
1 to 192, corresponding to the 192 half-hours from Monday
8:00 AM to Saturday 11:30 PM. For instance a two hours
class will have a timetable with 4 consecutive unit of time. In
order to restrict allocation of rooms to some given set of unit
times, we introduced the notion of domain which is simply a
set of integers (in 1..192) describing all allowed half-hours. A
domain is identified by a name which can be reused to refer-
ence the same set of values. For instance the domain “Morn-
ing”, which refers to the interval of time 8:30..12:30, from
Monday to Saturday consists in the following set of unit of
time: {1..10, 33..42, 65..74, 97..106, 129..138, 161..170}. The
Information System needs to know the preferences to take into
account when computing the timetable. There are three kinds
of preferences currently integrated to the IS for a given course
sessions: building and/or classroom and/or classroom type. It
is also important to store the occupancy of all classrooms.
A classroom can be used, for a given time slot, either for a
course session or for other purpose (e.g., meeting). The most
important attribute is Slot in TimeSlot concept. Slot = 0
if not yet allocated else it contains the assigned unit of time.

Usually timetabling is a task which is handled outside the
Information System model, as it depends on several informal
aspects such as the lecturers’ personal preferences about a spe-
cific classroom, building or the required day period (morning,
afternoon, evening, weekday, etc.).

It is not possible to use UML to express global constraints.
For instance one cannot express that the sum of all course
session hours of a course equals the total number of hours of
the course, over the semester.

B. Implementation
The need to express complex program logic with access to

information stored in an information system led to the devel-
opment of the ISCO framework [2], a seamless integration
of object-relational databases into a constraint logic language,
which has been used to implement parts of the University of
Evora’s general-purpose Information System.

It is not the purpose of this article to introduce the ISCO
language, but a short review of its main features is useful for
the discussion ahead. An ISCO program may transparently
access data from several distinct sources in a uniform way: all
will behave as regular Prolog database predicates, even though
they may reside in separate relational databases or SPARQL
agents. Some relevant advantages ISCO holds over competing
approaches are its ability to concurrently interface to several
legacy systems, its simplicity and high performance.

1) Accessing Databases: Predicates that are to be associated
with an external representation must be declared. This is
necessary because DBMSs need to have table fields named
and typed and none of this information is derivable from a
regular Prolog predicate.

class lecturer.
name: text. key.
department: department.id.
qual: text.

Fig. 2. ISCO classlecturer

A class lecturer can be declared in ISCO as in Figure 2.
This defines predicate lecturer/3, which behaves as a
database predicate but relies on an external system (e.g. an
RDBMS) to provide the actual facts. Class declarations may
reflect inheritance, although that isn’t shown in the previous
example. Several features of SQL have been mapped into
ISCO: keys and indexes, foreign keys and sequences to name a
few. The purpose has always been to ensure efficient execution
while retaining the simplicity of Prolog.

Class predicates may be used similarly to Prolog database
predicates, i.e. they may have full CRUD [17] functionality:
• insertion of new facts (Create),
• non-deterministic sequential access to all clauses (Read),
• updating of an existing fact (Update),
• removal of specific facts (Delete)

These operations may include constraints over their arguments
to limit the tuples they apply to. These may be actual FD
constraints or more specific syntactic constructs, designed to
provide a useful set of features to tap into the potential
efficiency provided by the RDBMS: for example, there are
notations to specify solution ordering or substring matching.

2) Contextual Logic Programming: is a clean and practical
object-oriented extension to Prolog [20], [1]. A named set
of clauses is called a unit, and is similar to a class in
OO languages. We emphasize the OOP aspects by means
of a stateful model, by means of unit arguments, which are
like instance variables. Consider a unit called lecturer to
represent some basic facts about the teaching at a University:

:-unit(lecturer(N, D, Q)).

name(N). % access predicate
dep(D). % access predicate
qual(Q). % access predicate

lecturer :- lecturer@(name=N, dep=D, qual=Q).

Fig. 3. CxLP unit lecturer

The difference between the code of figure 3 and a regular
logic program is the first line that declares the unit name and
introduces unit-global variables N, D and Q. Consider another
unit to represent information about courses, in figure 4: A
collection of units is designated as a contextual logic program.
An ordered, bound, collection of units is called a context and is
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:-unit(course(N, C)).

lecturer(N).
course(C).

course :- course@(lecturer=N, course=C).

Fig. 4. CxLP unit course

akin to an object, in OO speak. Each computation has a notion
of its current context. Goals may be executed in contexts,
which is like sending a message to an object.

To build contexts, we have the context extension operation
given by the operator :> . The goal U :> G extends the
current context with unit U and calls goal G in the new context.
For instance, to gather the academic qualification of the person
who taught the Aspect-Oriented Programming course (AOP),
we could launch the goal:

lecturer(N,_,Q) :>
course(N,aop) :> (
course,
lecturer)

Here, we start by extending the initially empty ([]) context
with unit lecturer, obtaining context [lecturer]. This
context is again extended with unit course, yielding the
context [course, lecturer], and it is in the latter that
goal course, lecturer is evaluated.

III. CONSTRAINT PROGRAMMING

“Constraint Programming represents one of the closest
approaches computer science has yet made to the Holy Grail
of programming: the user states the problem, the computer
solves it.” (E. Freuder [10])

Constraint Programming (CP) is a recent software technol-
ogy for declarative description and efficient solving of (very)
difficult combinatorial problems. CP has proven to be suc-
cessful in many relevant application areas such as scheduling,
planning, vehicle routing, resource allocation, configuration,
networks or bio-informatics.

The key idea of Constraint Programming is to allow the
user to reason about partial information in terms of con-
straints without worrying about how they will be satisfied.
This declarative aspect of CP is very important: the user
specifies what relationship must hold without any requirement
of providing a procedure to ensure the satisfaction of the
relations. This is possible because constraints are handled by a
dedicated constraint solver that is responsible for ensuring the
consistency of the set of constraints. The solver is then seen
as a “black-box” by the user.

Constraints have emerged in the context of the Logic
Programming (LP) in late 1980’s. LP is the ideal framework
for constraints since 1) its variables are really mathematical
unknowns and 2) it is able to deal with non-determinism
(important to find for instance all solutions satisfying the
constraints). In fact, LP is nothing else but a particular case of

Constraint Programming. The basic idea of Constraint Logic
Programming (CLP) [15] is to replace unification by constraint
solving over a particular domain of interest (Finite Domains,
real numbers, trees, lists, finite sets, etc.) [16]. CLP combines
the declarativity of logic programming and the efficiency of
constraint solvers. CLP opened Logic Programming up to a
wide range of real-life applications [13]. However, Constraint
Programming is not restricted to CLP and several solvers are
available (as libraries) for imperative languages like Java or
C++.

Constraint Programming (CP) has proved to be very success-
ful for Problem Solving and Combinatorial Optimization appli-
cations by combining the declarativity of a high-level language
with the efficiency of specialized algorithms for constraint
solving, borrowing sometimes techniques from Operational
Research and Numerical Analysis, see [22], [14] for general
surveys, [10] for a quick introduction and [16]for a complete
description of the paradigm of Constraint Logic Programming
on which this work has been based.

A constraint is a logical relation between several variables
restricting the values these variables can simultaneously take.

Constraints naturally enjoy several interesting properties :
• constraints may specify partial information, i.e. con-

straint need not to uniquely specify the values of its
variables,

• constraints are non-directional, typically a constraint on
two variables X, Y can be used to infer a constraint on
X given a constraint on Y and vice versa,

• constraints are declarative, i.e. they specify what rela-
tionship must hold without specifying a computational
procedure to enforce that relationship,

• constraints are additive, and the solving process is order-
independent (constraints can be added incrementally).

• constraints are rarely independent, typically they share
variables.

A. Constraint Satisfaction Problems

A wide variety of all industrial constraint problems can
be formulated as Constraint Satisfaction Problem (CSP) [24],
[13]. Formally, a CSP is defined by:
• a set of n problem variables {X1, X2, . . . , Xn}. These

variables are the unknowns of the mathematical problem.
• a set of n domains {D1, D2, . . . , Dn}. A domain is a

finite set of values (i.e. constants). Classically a domain
is a subset of the integers. The domain Di specifies the
set of possible values for the variable Xi.

• a set of m constraints {C1, C2, . . . , Cm}. A constraint
is a relationship that must hold between the variables
involved in the constraint. Generally a constraint is given
intentionally as a formula (e.g. X = Y + 10) but it
can also be given extensionally as a set of (acceptable)
tuples. For instance the constraint X xor Y = Z can
also be given by the set {<0,0,0>, <0,1,1>, <1,0,1>,
<1,1,0>}.

A CSP is then a discrete mathematical problem. Solving a
CSP consists in finding an assignment of variables (according
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to their corresponding domains) satisfying all the constraints.
Such a problem can also be stated as a first order logic formula:

∃X1,X2,...,Xn

∧
1≤i≤n

Xi ∈ Di ∧
∧

1≤j≤m

Cj

A constraint program mainly states the constraints (incre-
mentally) and asks the constraint solver to find one/the best
(according to an objective function)/all solution(s). Solvers for
CSP are called Finite Domain (FD) solvers (the name comes
from the fact that a domain is a finite set of constants). Such
solvers rely on efficient consistency techniques and on local
propagation algorithms (e.g. arc-consistency) to reduce the
domain of involved variables (i.e. removing values which will
never be part of a solution). For efficiency reasons, not all
reductions are performed (which would be too costly). The
domain of the variables are then an approximation of the real
domain of possible values (all solutions are in the domains
but not all values are part of a solution). Indeed, there is
a trade-off between the precision of the pruning algorithm
and its cost in terms of execution time. When a solution is
required, in order to eliminate impossible values, the solver
iteratively “enumerates” the variables: each variable is assigned
with a value in its (reduced) domain and the consequences
are propagated to other involved variables (using the same
consistency techniques). In case of failure another value is tried
(here a chronological backtracking algorithm is generally used
but other variations are possible). This labeling phase can be
improved by using heuristics concerning the order in which
variables are considered and the order in which values are
considered in the variable domains.

B. The GNU Prolog constraint solver

GNU Prolog is a native Prolog compiler including a power-
ful constraint solver over Finite Domains [8]. Such a solver
offers a wide variety of constraints, which we think have
not yet been exploited to their full potential in Information
Systems. For instance GNU Prolog offers:
• arithmetic constraints (both linear and non-linear), e.g.

X + Y < Z or X ∗ Y 6= Z. Inside such constraints it
is possible to use constraints functions like min, max,
dist, etc.

• symbolic constraints e.g., atmost(2,[X,Y,Z,T],10) states
that at most 2 variables among X,Y, Z, T can take the
value 10. As another example the symbolic constraint
element(I,[V1,V2,. . . ,VN ],X) enforces the variable X to
be equal to the Ith element of the vector of N values
V1, . . . , VN .

• boolean constraints: GNU Prolog offers all boolean
constraints such as ∧,∨, xor,¬,⇒,⇔, . . . Variables ap-
pearing in such constraints are implicitly constrained to
the domain 0..1.

• reified constraints: this important feature allows the
user to reason on the issue (satisfied /unsatisfied) of
a constraint. Namely, a constraint C can appear inside
any (above) boolean constraint (constraints are in fact
first-class objects). As an example consider the boolean

constraint X < Y ⇒ K = 8. Its operational behavior is
: as soon as the solver detects that X < Y it enforces
K = 8, conversely if it discovers K 6= 8 it enforces
X ≥ Y .

The core constructs of the constraint language are Con-
straints and Operators that are applied to Variables and Values.
Figure 5 presents our metamodel [18] using UML notation
(UML was chosen for the sake of clarity; an example of formal
grammar of one popular CP notation can be found in [7]).
As the metamodel shows it, a variable has a domain, and at
a given moment in time, a value. The domain of variables
can be boolean, integer, interval, enumeration or string. This
metamodel distinguishes between constraints and operators.
Thus, a constraint can be symbolic, arithmetic or boolean and
contain zero or several operators. Operators are: multiplication
(∗), addition (+), subtraction (−), . . . . These operations can
take place in boolean constraints (e.g. A ∗B ⇔ C). There are
three types of constraints: boolean, arithmetic and symbolic.
Symbolic constraints are applied on a set of variables at a
time. Constraints may be simple, but also reified. A reified
constraint is a constraint whose truth value can be captured
with a boolean variable, which can itself be part of another
constraint. Reified constraints make it for instance possible to
reason on the realization of constraints at different times.

Reified constraints can also be used to model soft-constraints
(or preferences). A soft-constraint is a constraint we want to
impose whenever it is possible but which can be forgotten if the
problem is unsatisfiable. Based on this, GNU Prolog offers the
constraint cardinality([C1, C2, . . . , CN ], Count) which ensures
Count is the number of constraints Ci that are true. Count being
an FD variable, it can be subject to any constraint or to a
maximization predicate, e.g. in order to maximize the number
of true (soft-)constraints as we will show later on.

C. Incrementality
Constraints appearing at run-time can obviously be taken

into account by a naive approach: a CP program is regenerated
from scratch augmented with the new constraints. However,
let us recall that CP is naturally incremental and constraints
are additive since the solving process is order-independent.
It is thus possible to easily add a new constraint at run-time
(it is also possible to retract constraints dynamically in FD
as shown in [21]). Two cases have to be considered. First,
the labeling phase has not yet been invoked: in that case the
constraint is simply posted to the solver (resulting in further
domain reductions). Second, the labeling phase has already
been called (e.g. to find a possible solution): in that case the
bindings done by this phase have to be undone before adding
the new constraint. In this second case, it is worth noticing
that this “restoring” is very easy in GNU Prolog with the
underlying backtracking mechanism (a choice-point has to be
created before the labeling phase). In both cases, the domain
reductions performed prior to the labeling phase are kept and
do not need to be recomputed (as it would be done when
restarting from scratch).

This is a key feature that opens CP to applications in-
teracting with the user (e.g., interactive configuration of a
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Fig. 5. Meta-model of the GNU Prolog constraint language [18]

Product Line, interactive exploration/modification in virtual
environments, etc.). In our case, when deriving a timetable
it is possible to interactively add new constraints, as we will
discuss further in later sections.

IV. THE TIMETABLE APPLICATION

In this section we describe the application concerning
timetables. It is a sub-part of the whole application of the
University’s IS. This web-based application allows the ad-
ministrator to display, compute a timetable and to modify an
existing schedule in order to tune it.

A. Computing a Timetable
As explained in Section II-A the Information System con-

tains the strategic information to compute precise timetables.
This include mandatory requirements but also preferences. The
process to compute a timetable is as follows:

1) Retrieve the needed information from the database.
2) Generate the Constraint Program to solve the CSP

associated to the required timetable.
3) Run the program to solve the CSP and propose one

solution to the user (here it is possible to provide several
solutions and let the user chose the most appropriate).

4) Record the selected timetable in the database.

It is worth noticing that all these steps are written in
GNU Prolog/ISCO. Steps 1) and 4) do not need much more
explanation (see Section II-B for more information on the OO
and persistence aspects). Step 3) is very important since it
computes the CSP associated to the required timetable and
generates a GNU Prolog program whose execution (Step 4)
will provide a solution (i.e. a timetable). It is worth explaining
this phase (see citeediss936,rudova for more information about
constraints for school timetabling).

The initial step consists in assigning lecturers to courses
and classes. This is done in a first step (and does not change
so often). Then it is necessary to allocate a time slot to each
course session and to find a compatible classroom (i.e. one
satisfying the requirements of the course).

The “link” between the data of the planning and the con-
straint program to generate the timetable is handled by the
TimeSlot concept. For a given course session there are
duration × 2 instances of TimeSlot. For instance a two
hours class will have a timetable that will have 4 associated
slots (the constraints ensuring they must be consecutive is
generated in the constraint program). The attribute varId is
a unique integer which is used to generate a unique variable
name XvarId in the CSP. The attribute Slot contains either
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0 (meaning this variable has not yet been assigned) or the
assigned time (a value in 1..192). Initially all Slot are equal
to 0 (meaning nothing is allocated) but later we can assign
some variables. This way we can deal with partial timetables.
For unallocated slots, the possible domain is given by Domain
as a set of possible values (each value is in 1..192). When a
triple <varId, Slot, values> is retrieved if the Slot = 0
the the corresponding variable XvarId is directly set to the
value Slot else its domain DvarId is defined as values.
The constraints Ck are generated from the database. Here we
benefit from the full expressive power of the GNU Prolog
solver. Namely, there are different ways to encode a given
constraint. We now discuss the most important constraints and,
for the most relevant of them, their translations (it would be
too lengthy and out of scope for this paper to exhaustively
specify all generated constraints).
Hard constraints are constraints which must be satisfied by
any solution.
• The k times X1, .., Xk in a timetable, have to be

consecutive, this is done using arithmetic constraints
(linear equations): X2 = X1 + 1 . . . .Xk = Xk−1 + 1

• Degree year course part of students class. All the times
that are associated with a timetable that is associated
with a class that is associated with a year of a degree
are collected and the all different global constraint is
used to ensure that no two classes of the same year of
a course occurs at the same time.

• Lecturer. All the times that are associated to a class that
a given lecturer teaches are collected in order to impose
that they be all different (using again all different).

• If a course has both lectures and lab or tutorial classes,
they should not occur on the same day. This may be
done by imposing that one of the times in the timetable
of each class can not be on the same day as the other,
e.g. X < Y − 32 ∨X > Y + 32.

• Two consecutive classes of the same degree (and level)
or taught by the same lecturer cannot occur in different
buildings. This is a hard constraint because students need
to have time to go from one building to another one.

Soft constraints or preferences are constraints that can be
violated if needed [4]. A soft constraint is a constraint we
want to impose whenever it is possible, but which can be
discarded if the problem becomes unsatisfiable (we say it is
over-constrained).
• For instance, all courses occurring in the same year of a

given degree should have all the classes in the morning.
This is achieved by collecting all the times of the classes
of the given year and degree (let us say X1, . . . , Xk, and
then imposing a cardinality constraint onto the times, i.e.
cardinality([

1 < V1 ∧ V1 ≤ 10 ∨ . . . ∨ 161 < V1 ∧ V1 ≤ 170,
. . . ,
1 < Vk ∧ Vk ≤ 10 ∨ . . . ∨ 161 < Vk ∧ Vk ≤ 170], M)

with M constrained as follows 0 < M and M < 66.
Then, we can maximize M the number of time slots in
the morning using the predicate maximize.

• A teacher does not have more than four hours a day.

This constraint can be set up in the data base for each
lecturer. The university policy, however, may impose a
limit, in this case a lecturer can not have more than eight
hours a day but this should be a hard constraint.
These constraints are defined in a similar way to the
previous one: using the cardinality and maximize GNU
Prolog predicates.

• A lecturer will not have classes in more then three
distinct days.

The assignment of a room to a class is done by using the
cardinality constraint over a disjunction of conjunctions where
only one must be true.

Example: a timetable H , with times associated (H0, V0),
(H1, V1) that has in the room preferences Room1 with
slot (S11, V S11), (S12, V S12) free, and Room2 with slot
(S21, V21), (S22, V22) free will give rise to the following
constraint:
V S11 = V0 ∧ V S12 = V1 ∧ Vk = Room1

cardinality([
V S11 = V0 ∧ V S12 = V1 ∧ Vr = Room1, V rS = S11

V S21 = V0 ∧ V S22 = V1 ∧ Vr = Room2, V rS = S21], 1)

The other constraints that we have to add are that all the
slot values of a room that have a value different from 0 must
be different, this is done by collecting all the room slot values
from the database.
Vr and VrS are variables that are used to keep track of the

room and slots associated to a timetable H . This way after
the variable labeling we are able to know what is the room of
a timetable, and what is the room slot we have associated to
each timetable slot.

We do not need to consider all the free slots in a room to
place a class because we keep track of the distribution in the
Prolog program, otherwise we would have to build a term for
each of 192 slots, that becomes too large in the case where
we have more than 100 possible rooms for a class.

It is worth noticing that even if theoretically a CSP is solved
at once (assigning a value to each variable), in practice this
is not possible for our University. Indeed, it is important to
keep in mind the structure of the University when computing
a timetable. The University is composed of several schools
(physically located in different building). Each school has its
own chief planner responsible for the sound schedule of the
degrees/courses of the school. It is then very important to
be able to compute the timetable step by step. The ability
of Constraint Programming to solve constraints incrementally
allows us to compute timetables at various level of granularity,
e.g., degree by degree or by sets of degrees at a time.

Finally it is important to empower the user to “tune”
the proposed timetable or to explore different possibilities
to chose the most adequate (for instance one can prefer
a timetable where tutorials are after lectures). Here again
Constraint Programming offers the needed tool to reach this
goal (incrementality, non-determinism and backtracking).

B. Application Structure
This application has the following top-level functions, which

are all implemented a GNU Prolog / ISCO programs:
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• Editing the Teaching Duties Assignment.
• Editing the Rooms information, this can be done by

including new rooms, editing the rooms type, or other
room specific information such as the number of seats.
Other options include the definition of new buildings.
Some courses such as sports use specialized facilities
such as swimming pools that may have to be added or
removed due to varying protocols with external entities,
since the university does not own one.

• Editing the information on lecturers, this includes in-
specting the classes they have to teach and their
schedule-related constraints, which may be hard or soft.

• Check for data consistency, which entails:
◦ For each valid degree/year/semester combination:

check if they have all the classes they should have
according to the degree curriculum.

◦ Check if it is possible to build a timetable for all
the classes; Sometimes, a class may have too many
courses (due to some errors) and this possibility is
taken into account here.

◦ For all lecturers, check if the classes they have
assigned are compatible with their declared hard
constraints.

◦ For each classroom, we collect all the related ses-
sion courses to know if it possible to accommodate
them. Some errors may occur when rooms are
directly assigned to session courses.

The data consistency step is required to generate a set
of timetables for a triple (degree, year, semester).

• Generate Timetables, which is done by choosing a set of
degrees, year and semester. This set may include all of
them or just one. There is no problem in generating twice
the same timetable since the persistent storage keeps the
data across runs and that there is no overwriting once
instantiated.
This functionality includes an option to reset (delete)
a set of timetables, and is able to locate the (degree,
year, semester) triples that do not yet have a complete
timetable.

• Visualize timetables: this functionality displays the
timetable for a classroom, a teacher, or a degree year
course.

Teaching Duties Assignment: The teaching duties assign-
ment includes all the information on courses such as number
of weekly hours, number of times by week, who teaches it,
courses, some classes may be simultaneously taught to differ-
ent courses, degrees, year and semester of the degree. This
information mainly originates in the departments and should
agree with the degree curricula. The scheduling committee may
have to correct some of this information, this can be achieved
through the web interface presented in figure 7.

This interface is also used to edit each class, listing them
by the name of the course (disciplina), the degree (curso) or
the lecturer (docente.)

An important feature is that the user can forcibly assign
a particular time and classroom to a given scheduled class,
even when the slot (time and classroom) was already taken.

Fig. 6. The web interface

Fig. 7. Assigning teaching duties to lecturers

This way it is possible to manually fine-tune the timetable,
correcting little details. The user-imposed edits only become
valid when they are found to be consistent.

Per-Course Class Scheduler: Once the schedules have been
generated, these may be visualized in their entirety, with an
interactive weekly calendar as shown in figure 8.
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Fig. 8. Visualizing entire schedules

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a real-life case study (the
University timetabling web-based application) to demonstrate
that constraints are useful in designing and implementing
Information Systems, and that the latter will benefit signif-
icantly from being constraint-informed. We have shown that
Constraint Programming is almost the perfect tool for this since
it combines the declarativity of high-level languages and the
power and efficiency of highly optimized constraint solvers.

The timetabling application is presently managing 63 cur-
ricula, 2582 courses taught by 515 faculty in 235 classrooms
distributed over 10 different buildings. The information system
and constraint solver run adequately on a low-end computer
(3.4GHz P4, 2GB RAM), meaning that response time is
barely perceptible to solve a single timetabling problem. As
the system is still under development, we don’t yet have
performance scaling information, but the design already allows
any number of timetables to be scheduled simultaneously, with
incrementality as a concern.

Using constraint programming in management information
systems has already been experimented with, see for example
Gupta and Akhter [12]. When compared with systems which
rely on libraries such as IBM CPlex or Gecode [23], our
approach has the advantage that we can conveniently do meta-
reasoning, as the CSP being solved is explicitly constructed
by a Logic program. So far we have developed a flexible

timetabling information system, in which the characteristics
of a solution are declaratively specified by constraints. This is
clearly an advantage over other approaches, not least because
the schedule and the criteria themselves may be the object of
introspection by the application, i.e. we have an executable
specification which is both convenient and efficient.

Our plans at present include enriching the type of con-
straints that may be specified to indicate preferences, not
only w.r.t. lecturers but also for entire weekly schedules. We
may also include input regarding preferences such as the total
distance traveled to attend a set of classes, or other criteria we
may choose to optimize for. Having an incremental schedule
builder is also a useful extension to perform, because the
instant feedback may prove a time-saver when setting up
timetables.

Considering the encouraging results we got from this expe-
rience, we will certainly apply a constraint-informed method-
ology to other Information System design and implementation
situations. It is in our medium-term plans to work on the
development of a formalism for general-purpose Constraint-
Informed Information Systems. A promising approach could
be to extend the OCL modeling language with generative
constraints to handle complex computations (which is the
essence of Constraint Programming).
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