
17 

VOL. 2, NO. 1 
Jul. 2016  

 

 © 2016 Coimbra Business School | ISCAC. All rights reserved           ISSN  

Constraint-Informed Information Systems in 
Space Management Optimization 

Irene Rodrigues   
Laboratory of Informatics, Systems and Parallelism (LISP ),  

University of Évora, Portugal 

ipr@uevora.pt  

Rui Quaresma   
Center for Advanced Studies in Management and Economics (CEFAGE ), 

University of Évora, Portugal 

quaresma@uevora.pt 

Daniel Diaz   
Centre de Recherche en Informatique (CRI),  

University Paris 1, Panthéon-Sorbonne, France 

daniel.diaz@univ-paris1.fr  

Salvador Abreu   
Laboratory of Informatics, Systems and Parallelism (LISP ),  

University of Évora, Portugal 

spa@uevora.pt  

ABSTRACT Declarative techniques such as Constraint Programming can be very effective in modeling and assisting manage-

ment decisions. We present a method for managing university classrooms which extends the previous design of a Constraint-

Informed Information System to generate the timetables while dealing with spatial resource optimization issues. 

We seek to maximize space utilization along two dimensions: classroom use and occupancy rates. While we want to maximize 

the room use rate, we still need to satisfy the soft constraints which model students ’ and lecturers’ preferences. We present a 

constraint logic programming-based local search method which relies on an evaluation function that combines room utiliza-

tion and timetable soft preferences. 

Based on this, we developed a tool which we applied to the improvement of classroom allocation in a University. Comparing 

the results to the current timetables obtained without optimizing space utilization, the initial versions of our tool manages to 

reach a 30% improvement in space utilization, while preserving the quality of the timetable, both for students and lecturers.  

KEYWORDS: constraint-informed information systems, optimization, constraint logic programming 

Introduction 

Declarative methods and tools have long been a hallmark of 

Artificial Intelligence-enabled applications. One of these is 

Constraint Programming, which consists of modeling a 

problem in terms of variables which may take values over a 

specific domain, and relations amongst them which are 

called constraints. When dealing with certain classes of 

problems, Constraint Programming techniques are able to 

provide very efficient solvers while retaining the ability to 

formulate the problem declaratively, relying on high-level 

concepts which may be very close to the application do-

main. Constraints may be used to formulate two kinds of 

problems: 

 Constraint Satisfaction Problems (CSPs), 

 Constraint Optimization Problems (COPs). 

The former finds a solution to a problem, while the second 

does so while ensuring that some form of optimum is 

reached. Both are search problems and can cope with en-

codings on arbitrarily complex domains. 

The UML framework (Booch, Rumbaugh, and Jacobson, 
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1999) proposes a set of methodologies for designing incre-

mental and scalable complex applications, balancing expres-

siveness, incrementality and abstraction, providing a formal-

ism for data and process modeling as well as code genera-

tion. 

Space management in higher education institutions (HEIs) is 

a recognized research subject, with published work by sev-

eral authors (Kilner Planning, 2006; Kilner Planning and Lon-

don Economics, 2006; Beyrouthy, Burke, McCollum, McMul-

lam, and Parkes, 2010; Ani, Tawil, Musa, Tahir, and Abdullah, 

2012; Abdullah, et al., 2012; Abdullah, Ali, and Sipan, 2012). 

One of the topics associated with space management in 

HEIs is the preparation of class schedules, which has also 

been the focus of research and applied work (Beyrouthy, et 

al., 2006; Rudová, Müller, and Murray, 2011). 

The preparation of class schedules is a process with a very 

significant impact on the teaching activities of universities, 

since it entails managing physical resources which are not 

amenable to change at will, such as the capacity of a class-

room. Moreover, this process may be overconstrained by 

contradictory requirements, for instance: from the student’s 

point of view one wants to concentrate classes in the same 

part of the day while for the lecturer one wants to minimize 

the number of days, which could imply having classes both 

in the morning and in the afternoon, thereby defeating the 

first constraint. 

An existing framework can be used to solve this sort of 

problem. We claim that the inclusion of declarative features, 

such as Constraint processing, was instrumental in easing 

the development of the augmented system, including its 

implementation but also the potential for its formal verifica-

tion. 

In a previous work (Rodrigues, Matos, Abreu, Deneckère, 

and Diaz, 2013), we claim that Constraint Programming is a 

useful and effective addition to the UML framework. To do 

so we described an information system construction frame-

work, based on Constraint Logic Programming (Diaz, Abreu, 

and Codognet, 2012) extended with persistence (Abreu and 

Nogueira, 2006; Abreu, 2001) and contexts (Abreu and Diaz, 

2003). 

Large scale information systems may be specified, modeled 

and designed using UML-based instruments such as Ration-

al Rose or the Eclipse UML Tools. These techniques and 

tools guide the practitioner and greatly simplify and improve 

the reliability of IS design and maintenance. Nevertheless, 

one aspect remains alien to the UML perspective: how to 

establish arbitrarily complex relations between otherwise 

unrelated components of a system, so as to ensure the cor-

rectness of the global state? One may specify integrity con-

straints, rules which control and ensure data validity, but 

these appear as verifications, and cannot normally be used 

to actually generate data. 

Including constraints among components in the UML frame-

work is a recognized objective: there are several initiatives 

which specify and implement higher-level frameworks, such 

as the Object Constraint Language (OCL), with the intention 

of embedding these into the UML modeling formalism. OCL, 

however, is most of the time pure documentation: there are 

hardly any working implementations and it ends up not be-

ing used in modeling tasks. 

Generically, constraints have long been recognized as a use-

ful concept in modeling languages (e.g., for requirements 

engineering) but they are also used within regular applica-

tions, in the role of combinatorial problem solver or optimiz-

er. As a consequence of its expressiveness and flexibility, 

Constraint Programming (CP) has been successfully used for 

modeling in several domains: (Rossi, van Beek, and Walsh, 

2006; Van Hentenryck, 1989) air traffic flow management 

(Chemla, Diaz, Kerlirzin, and Manchon, 1995), planning 

(Garrido, Arangu, and Onaindia, 2009) or product-line mod-

els (Mazo, Salinesi, Diaz, Djebbi, and Lora-Michiels, 2012; 

Djebbi, Salinesi, and Diaz, 2007; Mazo, Salinesi, Diaz, and 

Lora-Michielis, 2011), to name but a few. Already over a dec-

ade ago, CP was even identified by the ACM as “one of the 

strategic directions in computer research” (Barták, 1999). 

Constraint Logic Programming (CLP) is a declarative tech-

nique related to CP, which adds the possibility of construct-

ing and driving the constraint solving process by means of 

logic goal satisfaction. The declarativeness of CLP makes it 

suitable for even very complex modeling: constraints may be 

thought of as a set of relations (e.g., equations) yet retaining 

an efficient runtime execution. 

Our claim is that constraints are useful in designing and 

implementing components of an information system, and 

that the latter will benefit significantly from being constraint-

informed. To make and illustrate the point, we describe an 

actual application – the development of a timetabling sys-

tem for HEI’s, which incorporates several forms of resource 

optimization. 

The rest of the paper describes the framework and the run-

ning example – a University-wide timetabling information 

system – both its structure and some implementation as-

pects, which we proceed to critically analyze. We describe 

CLP and the GNU Prolog system (Diaz, Abreu, and Codognet, 

2012) and continue with how we used it to model parts of 

the application with constraints. Finally, we put this work in 

Irene Rodrigues, Rui Quaresma, Daniel Diaz and Salvador Abreu  
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context and make considerations regarding further evolu-

tion. 

Persistent Contextual Constraint Logic Programming  

The design and implementation of this web-based infor-

mation system component relies on the ISCO (Abreu, 2001) 

language and tools, which starts from the CLP base provided 

by GNU Prolog (Diaz, Abreu, and Codognet, 2012) and ex-

tends it with the mechanisms necessary to enable Object-

Oriented program structuring, by means of the Contextual 

Logic Programming language CxLP. Furthermore, the sound 

and expressive Prolog base is augmented with persistence 

in the form of the ISCO mediator extension, which resorts to 

external data providers such as relational databases, to per-

sistently store and query for structured data. ISCO imple-

ments a form of Datalog (Ceri, Gottlob, and Tanca, 1989) for 

CxLP which may be externally represented in several ways: 

for instance as an object-relational database accessed in 

SQL or an RDF dataset queried using SPARQL. This ability 

makes ISCO programs very flexible, as they may query and 

reason about data sources of many origins. The general 

organization for ISCO programs is shown in Figure 1. 

Figure 1 - Computational Environment for ISCO Applications 

The basis on which ISCO applications run is the GNU Prolog 

implementation of CLP(FD), i.e. Constraint Logic Program-

ming over Finite Domains, an instance of the CLP(X) scheme 

which is very appropriate for representing discrete prob-

lems. One important feature that CLP(X) brings is a sophisti-

cated hybrid search procedure: on the one hand it behaves 

like Prolog, with variables being non-deterministically (partly) 

bound, relying on backtracking to enumerate all the possible 

values. On the other hand, we have constraints which implic-

itly tie variables, in a way which proactively narrows the ad-

missible set of values for a given variable, just because it 

occurs in a constraint which was triggered because some 

other variable got narrowed. In a sense, we mix a-posteriori 

search-space exploration (via backtracking) with a-priori 

search-space pruning (via constraint propagation). 

GNU Prolog provides a framework for expressing con-

straints which is generic and caters to many requirements: it 

centers on the concepts of Constraint, Variable and Domain 

and follows the schema depicted in Figure 2. A remarkable 

feature of this diagram is the four subclasses of Constraint 

which are sufficient to model several behaviors: arithmetic 

and Boolean have their usual meaning, but the other two 

deserve further explanation: 

 a Symbolic constraint is used for global constraints: it is a 

sort of “hooks” for the inclusion of otherwise complex or 

inefficient constraints. Examples of symbolic constraints 

include at most which states that at most a stated num-

ber of a list of constraints will hold, and all different 

which stipulates that all the listed variables are pairwise 

different; 

 a Reified constraint relates the value of a constraint vari-

able with another constraint. This is a very powerful fea-

ture that allows one to encode meta-level or disjunctive 

constraints or, more generally, provide meta-level 

“switches” or “sensors” to enable, disable or monitor 

groups of constraints.  

Figure 2 - Constraints in GNU Prolog 

For this application we added a new built-in predicate to 

GNU Prolog, call_with_timeout/2, which runs a goal until 

success or a given time has elapsed. Doing so has proved a 

good choice for the situation at hand, where the web inter-

face is not expected to have the operator wait indefinitely.  

Class Scheduling in HEIs  

Class scheduling is at the heart of the activity of HEI ’s: it is a 

mission-critical task, with a clear impact on the physical re-

source usage but also on the perceived performance of the 

organization. In the specific case of the University of Évora, 

the process of preparing the schedules is done by means of 

an in-house application that satisfies a set of underlying 
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general requirements governing timetable preparation, 

which include: 

 Classes within a week are organized in blocks of 90 or 

120 minutes each; 

 Classes are concentrated in a particular part of the day, 

either the morning or the afternoon, to ensure the exist-

ence of free time for students to study on their own; 

 Classes occur in the 08:00-20:00 hour range, with the 

exception of the 13:00-14:00 period which is reserved 

for lunch; 

 The week goes from Monday to Friday; 

 From the standpoint of the lecturers, classes tend to 

concentrate in at most two distinct weekdays.  

In our previous work, we extended the design methodology 

to include requirements specified as constraints, which led 

us to develop an application (Rodrigues, Matos, Abreu, De-

neckère, and Diaz, 2013) that has proven able to meet the 

general objectives outlined above. 

However, subsequent analysis of schedules generated by 

the application has revealed that, from the point of view of 

space management, we tend to get a relatively low level of 

frequency of use and rate of occupancy of classrooms. This 

behavior translates to an inefficient use of the available 

physical resources, with direct budgetary consequences. 

Thus, and in line with (Kilner Planning, 2006), we worked 

from the basis of the implemented framework, extending it 

with a new utility function which aims at maximizing the use 

of space along the dimensions we mentioned: the temporal 

frequency of use, the physical rate of occupancy of the 

premises. Other concerns which we try to cater to are the 

avoidance of “holes” in students’ schedules as well as a gen-

eral minimization in the number of class days for students. 

We show a UML class diagram for the timetabling compo-

nent of the information system in Figure 3, similar to that 

found in (Rodrigues, Matos, Abreu, Deneckère, and Diaz, 

2013).  
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Figure 3 - Timetabling UML Class Diagram 
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The Timetable Manager  

The timetable manager deals with all aspects of specific 

timetables: the generation, editing, display and other book-

keeping tasks. The timetable manager has the option to 

manually edit partial timetables and to automatically gener-

ate partial or complete timetables. The automatic timetable 

generation can be done incrementally by collecting a set of 

class (course) variables, as required for a given degree cur-

riculum. 

The system enforces the timetable hard constraints both for 

the automatic generation and for manual editing. In the lat-

ter case, it makes no sense to take into account the soft 

constraints, though it is possible to subsequently evaluate 

the solution after it has been persistently stored. 

The timetable may be incrementally built, resulting in a par-

tial schedule that is represented in a way which is always 

guaranteed to be coherent. This allows us to: 

1. Display the partial timetable, 

2. Continue to build towards the final timetable using the 
values of the variables already present in the database 

as hard constraints, 

3. Evaluate the timetable: the evaluation of a partial or 

completed timetable can be done by applying the utility 
functions that model the soft constraints, 

4. Optimize the represented timetable using the soft con-

straints, according to a utility function.  

The soft constraints model preferences, i.e., defeasible con-

straints, which include: 

 The students’ timetable ought to be compact. If a timeta-

ble has many “holes,” student time may be wasted if the 

holes are not long enough for them to be used as self-

study periods. 

 In order to evaluate these preferences we count the free 

slots between the students’ classes. We can view and 

represent a timetable as the set of slots it occupies in 

the domain [1 : : : 192]1 

 The students’ timetable ought to be either all in the 

morning, or all in the afternoon. This preference is im-

portant in order to allow the students to organize their 

self-study time. 

 Function FMorningDays represents the number of morn-

ings in a student’s timetable. 

 Function FAfternoonDays represents the number of after-

noons in the student’s timetable. 

 Function FDays represents the number of days in the 

student’s timetable. 

 To prefer all days in the morning or all days in the 

afternoon we maximize the function FMA. 

 This soft preference can be defined for each year of 

a degree, for instance first year students have their 

classes in the morning, second year in the after-

noon. To obtain this preference we use FAfternoonDays or 

FMorningDays as a utility function. 

 A student’s timetable should be kept occupied every day 

of the week: let the function FDays represent the number 

of days in which the student has classes: 

 

By maximizing FDays we obtain the desired effect: we pre-

fer timetables that have classes on all days. 

 Students should have no more than 4 class hours per 

day. This constraint can easily be directly expressed in 

our representation. 

Lecturers’ timetables also define preferences, such as: 

 The days with classes should be less than or equal to 

three, so as to leave time for other duties, such as re-

search and management tasks. 

 The days with classes should be consecutive. This ena-

bles the lecturer to engage in other activities which may 

take longer. 

For classrooms we can define a utility function in order to 

represent the university room occupancy, which we will call 

Univ_Occupancy, and is defined as the sum of the occupancy of 

1
This representation has 192 discrete time slots which cover the entire week. See (Rodrigues, Matos, Abreu, Deneckère, and Diaz, 2013) for a more detailed 

description of the model. 

FComp=192 -  𝑒𝑙𝑒𝑚 𝑖 + 1 − 𝑒𝑙𝑒𝑚 𝑖 + 1

𝑁

𝑖=1

 

FMorningDays=#{𝓍/𝑒𝑙𝑒𝑚(𝑖)|32 < 11} 

FAfternoonDays=#{𝓍/𝑒𝑙𝑒𝑚(𝑖)|32 > 12} 

FDays=#{𝓍/𝑒𝑙𝑒𝑚(𝑖)|32} 

FMA=max(FAfternoonDays, FMorningDays) 

FDays=#{𝓍/𝑒𝑙𝑒𝑚(𝑖)|32} 
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each relevant room: 

The room occupancy is defined in terms of the fractional 

occupancy for each time slot: 

Finally, the occupancy for a given slot is given by the ratio of 

the number of applicable enrolled students to the number 

of seats: 

Where: 

 NumberPlacesi is defined for each room i, and indicates 

the capacity (in seats) of the room. 

 StudentsNumber(i;j) is computed from the available data, 

using the information associated to the particular class 

occurrence. 

 slots(Roomi) is the projection of the timetable of room i 

onto slots , a set with values in the domain [1 : : : 192]. 

The Univ_Occupancy is the utility function that will be opti-

mized for, in order to better use the physical (space) re-

sources. Note that this optimization gives rise to a solution 

with a better use of the classroom seats, some rooms may  

become empty, without any classes in it. 

Room utilization can be improved if: 

 The number of classes per course is optimized, taking 

into account the room capacity and the number of stu-

dents. We are able to split or merge specific classes. At 

this time, the application expects that the number of 

classes for each course has been previously assigned 

and cannot be changed. 

 Opening and closing university rooms: we can close 

some rooms, thereby freeing up the space for other ac-

tivities. This can reduce the operating costs for a course, 

as classrooms have fixed costs which are independent of 

their actual utilization rate. 

The application can be used to optimize for the minimal 

number of rooms necessary for classes. To do so, we need 

to optimize (maximize) with a utility function that grows with 

the number of rooms without any assigned classes. 

Optimization 

The application is able to optimize the university timetable, 

according to a utility function that enables us to evaluate 

and compare timetable instances. 

The optimization can be done gradually since the current 

best solution is always kept in persistent storage, which al-

lows for an incremental usage pattern. 

The optimization currently has four parameters: 

 The set of (course) classes that we want to optimize for. 

We can either choose to optimize all timetables, all clas-

ses for the entire university, or we can specify a subset of 

the courses, the optimization will be done just by chang-

ing the values of the classes for these courses. Similarly, 

we can give a set of classrooms to optimize, the optimi-

zation will be done just by adjusting the specific classes 

which take place in these rooms. 

The same may be done for a set of teachers, for a set of 

courses or, ultimately, any formulation that can be used 

to specify a set of timetable classes.  

 The utility function we want to use. 

The utility function defines the preferences that we have 

for the timetables. At present, multiple preferences are 

obtained by adding the functions specified by the user. 

 The number of classes we may want to change the value 

of in each step of the optimization. 

A random set of classes is computed and new solutions 

will be tested for this set. The obtained timetables will 

differ on the number of value slots which are changed 

from the initial configuration: these may be both times 

and assigned rooms. 

 The number of iterations is a relevant input parameter 

due to the size of the search space for this problem, 

which can be very slow to explore. We can replace this 

parameter by a timeout. 

We use Hill Climbing for the optimization algorithm. It starts 

with the current timetable, a solution. A set of classes is ran-

domly chosen and their values are recalculated in order to 

obtain a new candidate solution. Whenever an improvement 

is obtained, the new timetable is updated in persistent stor-

age, as shown in Listing 1. 

Irene Rodrigues, Rui Quaresma, Daniel Diaz and Salvador Abreu  

Univ_Occupancy=  𝑅𝑜𝑜𝑚_𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑖

𝑟𝑜𝑜𝑚𝑁

𝑖=𝑟𝑜𝑜𝑚 1

 

𝑅𝑜𝑜𝑚_𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑖 =  
𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦(𝑖,𝑗)

#{𝑠 𝑠  ∈ 𝑠𝑙𝑜𝑡𝑠  𝑅𝑜𝑜𝑚𝑖 }

𝑠𝑙𝑜𝑡 𝑁

𝑗=𝑠𝑙𝑜𝑡 𝑖

 

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦(𝑖,𝑗 ) =
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠𝑁𝑢𝑚𝑏𝑒𝑟(𝑖,𝑗)

𝑁𝑢𝑚𝑏𝑒𝑟𝑃𝑙𝑎𝑐𝑒𝑠𝑖
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Listing 1 - Listing of the Optimization Function 

1 optimize(Classes, UtilityF, NClasses, Iterations) 

2 { 

3     Value = evaluate(Classes, UtilityF); 

4     for (i = 0; I < Iterations; ++i) { 

5 choose (NClasses, Set, Vars); 

6 Vars_Value_Max = value (Vars); 

7 clear_value (Vars); 

8 COP (Classes, UtilityF, ValueS); 

9 if (ValueS > Value) 

10  writeDB (Classes); 

11     else 

12  writeDB (Vars_Value_Max); 

13     } 

14 } 

The Constraint Optimization Procedure COP (see Listing 2) 

uses the finite domain constraints provided by the GNU 

Prolog solver and ISCO to interface the persistent storage, 

supplied by a PostgreSQL object-relational database, inter-

faced via ISCO. Notice that COP operates by selecting the 

best configuration which may be obtained within a given 

time limit.  

Listing 2 - Listing of the Constraint Optimization Procedure 

1 COP(Classes, UtilityF, ValueS) 

2 { 

3     CollectVars (Classes, Vars); 

4     HardConstraints(Vars); 

5     repeat { 

6 labeling(Vars, random); 

7 Value = evaluate(Classes, UtilityF); 

8     } until (Value > ValueS) OR timeout 

9 } 

Examples 

We now consider a few examples from the actual courses 

carried by the School of Social Sciences of the University of 

Évora. 

Optimizing for students’ preferences 

Consider the sample timetable shown in Figure 4: it has sev-

eral deficiencies which are manifest as violations of soft con-

straints. For instance, it has classes both in the morning and 

in the afternoon, but also other issues which are not explicit 

in the printout, such as underfilled classrooms. 

After one step of optimization, which may subsequently be 

hand-corrected, the system proposes the timetable on Fig-

ure 5 which is better, but still offers room for improvement. 

 

Figure 4 - Initial Timetable  

Figure 5 - Timetable after one Automated Improvement Step  

By selecting the “optimization step” action in the user inter-

face, the operator brings the timetable to that shown in fig-

ure 6, where most classes occur in the morning. 

Figure 6 - Optimized Timetable  

Optimizing for room occupancy and students’ pref-
erences 

In order to improve room occupancy, we have to evaluate 

each room for each timetable as well as take into account 

the other utility functions for each university course, which 

takes us to a problem of global optimization. 

Table 1 presents the data for the rooms of one of the build-

ings of the University, one where the courses of the School 

of Social Sciences hold most of their classes. These data 

reflect the actual timetable of these rooms in the second 

semester of school year 2013/14, and it was generated and 
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edited with this application. 

Table 1 - Rooms occupancy rate before optimization 

 

 

Table 2 presents the data for the same rooms after some 

optimization steps: 

 20 runs of the procedure:  

optimize (Classes; UtilityF; NClasses; Iterations)  

 Classes represents the set of classrooms being optimized for. 

These are made explicit in the set enumerated in Table 

1. 

 UtilityF is the utility function, which in this case is defined as: 

This function takes into account the following prefer-

ences:  

 From the point of view of the students: FComp, which 

favors a compact timetable and FMA, which benefits 

classes either in the morning or in the afternoon, but 

not both. 

 From the room occupancy point of view: FUniv_Occupancy, 

which maximizes room occupancy.  

 Nclasses: 3. 

The number of variables that change from solution to 

solution is 3. 

 Iterations: 100. 

The number of times a new set of variables is chosen. 

The solution in table 2 increases the occupancy of those 

rooms from 61% to 66%, while maintaining the student’s 

preferences in the final timetable2.  

 Table 2 - Rooms occupancy rate after optimization 

The requirement for improvement is materialized by impos-

ing that, in a better solution, the sum FComp + FMA cannot de-

crease. 

The final timetable is of better quality than the first one, re-

garding room occupancy and is equivalent to it w.r.t. the 

degree of satisfaction of student’s preferences. 

In this example, we actually obtained better solutions with 

an increase of 30% for rooms occupancy rate, but the stu-

Irene Rodrigues, Rui Quaresma, Daniel Diaz and Salvador Abreu  

 Mon Tue Wed Thu Fri TOT 
 53% 86% 75% 86% 79% 75% 

 40% 57% 85% 62% 9% 59% 

 81% 59% 50% 59% 51% 61% 

 62% 83% 81% 86% 53% 77% 

 75% 65% 86% 70% 81% 74% 

 53% 40% 72% 62% 75% 58% 

 47% 49% 55% 30% 18% 45% 

 65% 32% 61% 48% 9% 47% 

 43% 69% 66% 51% 40% 56% 

 42% 49% 58% 45% 63% 51% 

 70% 57% 57% 56% 71% 61% 

 15% 69% 74% 67% 9% 56% 

 35% 86% 73% 69% 77% 67% 

 88% 85% 51% 88% 18% 74% 

 89% 91% 72% 89% 89% 87% 

 71% 47% 59% 63% 9% 57% 

 71% 65% 68% 81% 50% 69% 

 45% 51% 52% 68% 9% 52% 

 47% 78% 51% 81% 86% 68% 

 27% 80% 59% 65% 84% 62% 

 68% 42% 44% 55% 54% 53% 
 43% 57% 48% 72% 9% 54% 

 56% 61% 63% 68% 55% 61% 

 Mon Tue Wed Thu Fri TOT 

 58% 86% 79% 84% 79% 76% 

 41% 76% 85% 69% 9% 64% 

 81% 59% 50% 59% 51% 61% 

 66% 83% 81% 86% 53% 77% 

 75% 65% 86% 70% 81% 74% 

 83% 36% 98% 65% 75% 67% 

 47% 52% 53% 30% 18% 46% 

 80% 26% 69% 52% 9% 53% 

 64% 72% 66% 51% 40% 61% 

 42% 49% 58% 45% 63% 51% 

 70% 57% 57% 67% 71% 64% 

 15% 69% 74% 67% 9% 56% 

 38% 86% 73% 69% 77% 69% 

 88% 85% 51% 88% 18% 74% 

 89% 91% 72% 89% 89% 87% 

 71% 58% 74% 71% 9% 65% 

 71% 65% 68% 81% 50% 69% 

 50% 58% 71% 68% 9% 59% 

 57% 88% 51% 88% 86% 73% 

 76% 97% 73% 65% 84% 78% 

 99% 95% 44% 55% 54% 65% 

 9% 94% 70% 77% 9% 65% 

 62% 69% 68% 70% 55% 66% 

2 
Should the latter not be given the same priority we can reach a room occupancy of over 85%. This is a matter for management policy, as we may tune the 

utility function to use different weights for each component.  

𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝐹 = 𝐹𝐶𝑜𝑚𝑝 + 𝐹𝑀𝐴 + 𝐹𝑈𝑛𝑖𝑣 _𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦  
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dents’ preferences utility turned out lower. The decision as 

to which soft constraints are actually to be upheld has to be 

made by the course scheduling committee. 

Related Work  

In (Abdullah, et al., 2012), the authors discuss and propose 

measures to evaluate the space performance in a HEI. For 

these authors, the HEI space is one the organization’s most 

expensive assets. In (Ani, Tawil, Musa, Tahir, and Abdullah, 

2012) the authors present a study to evaluate and measure 

the learning space usage rate based on the HEI timetables 

supplied by the institutions. Space management is an im-

portant issue, not only for the usage optimization, but also 

for the maintenance operations cost of the spaces. For 

these authors, the learning space must be managed effec-

tively and efficiently so as not to become a burden and en-

sure there is minimal wasted space in HEIs. 

The timetabling problem that we consider belongs to the 

class of post enrollment problems since the students’ hard 

constraints are imposed by the degrees curriculum, this 

problem is included in some International Timetabling Com-

petitions such as (Post, Di Gaspero, Kingston, McCollum, and 

Schaerf, 2013) and there are computational approaches to 

solve it that can be classified as local search (Cambazard, 

Hebrard, O'Sullivan, and Papadopoulos, 2012), constructive 

(Burke, McCollum, Meisels, Petrovic, and Qu, 2007) or com-

bined methods (Müller, 2009). In (Rudová, Müller, and Mur-

ray, 2011) a complex course timetabling problem at a large 

university is discussed providing new insights into the overall 

timetabling process. They use search for a complete assign-

ment of times and rooms to classes, taking all hard and soft 

constraints into account. They present methods for modify-

ing a computed solution to deal with changes introduced at 

a later time with a minimal impact on existing assignments. 

Our design may be characterized as using a hybrid ap-

proach, as we combine a constructive method to build solu-

tions that satisfy the hard constraints and proceed with a 

local search procedure to satisfy the soft constraints. 

Closing Considerations  

In this article we have taken a real-life case study: the timeta-

bling problem for a University, which we had already shown 

to benefit from using constraints in the design and imple-

mentation process of the information system. We pushed 

the envelope by following the same design philosophy when 

dealing with the more complex issue of optimization for 

physical space management. 

In the process, we mixed the power and expressiveness of 

the constraint-based local search optimizer for space man-

agement, with the flexibility of an incremental user-

controlled application interface. It turns out that this mix of 

reassuring conservativeness and resource-efficient eager 

optimization strikes an effective balance, which is appreciat-

ed by the end-users. Moreover, the end results translate to  

significant savings in physical resource usage, with the ensu-

ing economic and organizational benefits. 

The timetabling application is presently managing over 60 

curricula, totaling over 2500 courses taught by about 500 

faculty members in more than 200 classrooms distributed 

over 10 different buildings. The information system and con-

straint solver run very well on a low-power virtual machine, 

meaning that response time is barely perceptible to solve a 

single timetabling problem. 

Because it is integrated with a full CLP engine, and when 

compared with systems which rely on libraries such as IBM 

CPlex or Gecode (Tack, Lagerkvist, and Schulte, 2008) our 

approach has the advantage that we can conveniently do 

meta-reasoning, as the CSP being solved is explicitly con-

structed by a Logic program. So far we have developed a 

flexible timetabling information system, in which the charac-

teristics of a solution are declaratively specified by con-

straints. This is clearly an advantage over other approaches, 

not least because the schedule and the criteria themselves 

may be the object of introspection by the application, i.e. we 

have an executable specification which is both convenient 

and efficient. 

Our plans at present include enriching the type of con-

straints that may be specified to indicate preferences, not 

only w.r.t./concerning lecturers but also for entire weekly 

schedules. We may also include input regarding preferences 

such as the total distance traveled to attend a set of classes, 

or other criteria we may choose to optimize for. Having an 

incremental schedule builder is also a useful extension to 

perform, because the instant feedback may prove a time-

saver when setting up timetables. 

In what concerns the constraint solver, we are likely to 

evolve towards high-performance specialized solver engines 

such as PaCCS or MaCS (Machado, Pedro, and Abreu, 2013;  

Machado, Abreu, and Diaz, 2013) which will be able to effi-

ciently deal with global optimization, largely because they 

are designed to work on massively parallel computational 

platforms. 

The system has been in production for about one year, hav-

ing already evolved to encompass physical resource optimi-

zation imperatives, thereby clearly demonstrating its fitness 

for the appointed task. Considering the good results we 

have been getting, we will certainly apply a constraint-

informed methodology to other Information System design 
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and implementation situations. We are planning to work 

towards a formalization for general-purpose Constraint-

Informed Information Systems, as we gain more experience 

with concrete use-cases. 
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