
The GNU Prolog System and its Implementation

Daniel Diaz
University of Paris 1
CRI, bureau C1407
90, rue de Tolbiac

75634 Paris Cedex 13, France
and INRIA-Rocquencourt

Daniel.Diaz@inria.fr

Philippe Codognet
University of Paris 6

LIP6, case 169
8, rue du Capitaine Scott

75015 Paris, France
and INRIA-Rocquencourt

Philippe.Codognet@lip6.fr

ABSTRACT
We describe in this paper the GNU-Prolog system, a free
system consisting of a Prolog compiler and a constraint
solver on finite domains. GNU-Prolog is based on a low-level
mini-assembly platform-independent language that makes it
possible for efficient compilation time, and allows to produce
small stand alone executable files as the result of the com-
pilation process. Interestingly, the Prolog part is compliant
to the ISO standard, and the constraint part includes sev-
eral extensions, such as an efficient handling of reified con-
straints. The overall system is efficient and comparable in
performances with commercial systems, both for the Prolog
and constraint parts.

1. INTRODUCTION
GNU Prolog 1 is a free Prolog compiler supported by the
GNU organization. It was released in April 1999 and more
than 2500 copies have been downloaded up to now from the
INRIA ftp mirror site 2. It is built on previous systems de-
veloped at INRIA, namely wamcc [4] for Prolog and clp(FD)

[5] for constraint solving on finite domains. However, the
compilation scheme has been completely redesigned and the
system extended.
The overall features of GNU Prolog can be summed up as
follows. The Prolog system includes floating point num-
bers, streams, dynamic code, etc, and is compliant to the
ISO standard for Prolog; it also integrates several extensions
such as global variables, definite clause grammars (DCG), a
sockets interface, an operating system interface, and a total
of more than 300 Prolog built-in predicates. The system also
include a Prolog debugger and a low-level WAM debugger,
a line editing facility under the interactive interpreter with
completion on atoms. Last but not least, there is a power-

1http://www.gnu.org/software/prolog
2Statistics concerning the main GNU ftp site and other mir-
ror sites are not available.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’2000 Como, Italy
Copyright ACM 0-89791-88-6/97/05 ..$5.00

ful bidirectional interface between Prolog and C. This fea-
tures implicit Prolog ↔ C type conversion, transparent I/O
argument handling, non-deterministic C code, and ISO er-
ror support. Concerning performances, compiled predicates
(native-code) are as fast as wamcc on average and consulted
predicates (byte-code) are 5 times faster than wamcc. In the
constraint solving part, there is no need for explicit declara-
tions of FD variables, which are completely integrated into
the Prolog environment, and fully compatible with Prolog
variables and integers. GNU Prolog also includes an efficient
constraint solver over Finite Domains (FD), similar to that
of the clp(FD), described in [5; 6]. The key feature of such
a solver is the use of a single (low-level) primitive to define
all (high-level) FD constraints. There are many advantages
in this approach: constraints can be compiled, the solver is
open and extensible, and the performances are comparable
to that of commercial solvers. The FD solver contains many
predefined constraints: arithmetic constraints, boolean con-
straints, symbolic constraints, reified constraints; there are
more than 50 FD built-in constraints/predicates, and sev-
eral predefined labeling heuristics. Moreover new high-level
constraints can be easily defined by the user and defined in
terms of simple primitives.
The rest of this paper is organized as follows. Section 2 in-
troduces the motivation for producing yet another Prolog
and CLP system and provides some background. Section
3 describes the compilation scheme for Prolog and perfor-
mance evaluation is detailed in Section 4. Then Section 5
describe the extension to handle constraint solving over fi-
nite domains, and a short conclusion ends the paper.

2. MOTIVATION AND BACKGROUND
Since Pascal and the P-code in the 70’s , and more recently
with Java and the JVM in the 90’s abstract machines have
been highlighted as the backbone of the compilation pro-
cess. For Prolog, the Warren Abstract Machine (WAM) [14;
1] is a de facto standard and classical techniques consist in
either executing directly the WAM code with an emulator
written in C (original version of SICStus Prolog) or assem-
bler (Quintus Prolog) or in directly compiling to native code
(Prolog by BIM, latest version of SICStus Prolog, Aquarius
Prolog). Another approach consists in translating Prolog to
C. The idea is to compensate the lack of optimizations (re-
quired for simplicity) by the absence of emulation overhead
phases (fetching and decoding) since, finally, the C compiler
would produce native code. The wamcc Prolog compiler was
based on this approach, but with also the idea of translat-

1

ing a WAM branching into a native code jump in order to
reduce the overhead of calling a C function, see [4] for de-
tails. There is however a serious drawback to this approach,
which is the size of the C file generated and the time taken
to compile such a big program by standard C compilers (e.g.
GCC), especially in trying to optimize the code produced.
The novelty of the GNU Prolog compilation scheme is to
translate a WAM file into a mini-assembly (MA) file. This
language has been specifically designed for GNU Prolog.
The idea of the MA is then to have a machine-independent
intermediate language in which the WAM is translated. The
corresponding MA code is mapped to the assembly language
of the target machine. In order to simplify the writing (i.e.
porting) of such translators the instruction set of MA must
be simple, in the spirit of the LLM3 abstract machine for
Lisp [3], as opposed to the complex instruction set of the
BAM designed for Aquarius Prolog [13]. Actually, the MA
language is based on 10 instructions, mainly to handle the
control of Prolog and to call a C function.

3. PROLOG COMPILATION SCHEME
Classically the Prolog source file gives rise to an object which
is linked to the GNU Prolog libraries to produce an exe-
cutable. For that, the Prolog source is first compiled to
obtain a WAM file. The WAM file is translated to a MA
file. The MA file is then mapped to the assembly language
of the target machine which next give rise to an object file.
All object files are linked together with the GNU Prolog li-
braries to provide an executable. The compiler also takes
into account Finite Domain constraint definition files. It
translates them to C and invoke the C compiler to obtain
object files as explained later. Obviously all intermediate
stages are hidden to the user who simply invokes the com-
piler on his Prolog file(s) (plus other files: foreign C file,
FD files,etc) and obtains an executable. However, it is also
possible to stop the compiler at any given stage. This can
be useful, for instance, to see the WAM code produced. Fi-
nally it is possible to give any kind of file to the compiler
which will insert it in the compilation chain at the stage
corresponding to its type.

3.1 From Prolog to the WAM
The pl2wam sub-compiler accepts a Prolog source and pro-
duces a WAM file. This compiler is fully written in GNU
Prolog and bootstrapped. It compiles each clause in sev-
eral passes, as follows. First, the clause is simplified: con-
trol constructs like disjunctions, if-then or cut are rewritten
(giving rise to auxiliary predicates if needed). Then, the
clause is translated in a more practical internal format and
variables are classified as permanent or temporary, perma-
nent variables are assigned. Subsequently, the WAM code
associated to the clause is generated. Finally, registers (tem-
porary variables) are assigned and optimized. The code of
each clause of a predicate is then grouped and the indexing
code is generated, see [2] for details.
This compiler benefits from many (well-known) optimiza-
tions: register optimization, unification reordering, inlining,
last subterm optimization, etc. Most of these optimizations
can be deactivated using command-line options. Deactivat-
ing all options makes it possible to study the basic Prolog
to WAM compilation process.

3.2 From the WAM to the mini-assembly (MA)

The second stage translates a WAM file into a MA file. The
idea of the MA language is to have a machine-independent
intermediate language in which the WAM is translated. The
design of MA comes from the study of the C code produced
by wamcc. Indeed, in the wamcc system, most WAM instruc-
tions given rise to a call to a C function performing the
treatment. The only exception was obviously instructions
to manage the control of Prolog and some short instructions
that were inlined. The MA language has been designed to
avoid the use of the C stage and then offers instructions
to handle the Prolog control, to call a C function and to
test/use its returned value. The MA file is then mapped to
the assembly of the target machine (from which an object
is produced).
In order to simplify the writing of translators of the MA to
a given architecture (i.e. the mappers), the MA instruction
set must be simple: it only contains 10 instructions that are
described now:

pl jump pl label : give the control to the predicate whose
corresponding symbol is pl label . This instruction
corresponds to the WAM instruction execute.

pl call pl label : give the control to the predicate whose
corresponding symbol is pl label after initializing the
continuation register CP. This instruction corresponds
to the WAM instruction call.

pl ret: give the control to the address stored in the contin-
uation pointer CP. This instruction corresponds to the
WAM instruction proceed.

pl fail: give the control to the address stored in the last
alternative (ALT cell of the last choice point). This
instruction corresponds to the WAM instruction fail.

jump label : give the control to the symbol label . This in-
struction is used when translating indexing WAM in-
structions to perform local control transfer (e.g. try,
retry or trust). This instruction has been distin-
guished from pl jump (even if both can be implemented
in a same manner) since, on some machines, local
jumps can be optimized.

c ret: C return. This instruction is used at then end of the
initialization function to give back the control to the
caller.

move reg1 ,reg2 : copy the WAM X or Y register reg1 to
the register reg2 .

call c fct name (arg ,...): call the C function fct name

passing the arguments arg ,... Each argument can be
an integer, a float (C double), a string, the address of a
label, the content of a memory location, the content or
the address of a WAM X or Y register. This instruction
is used to translate most of the WAM instructions.

fail ret: perform a Prolog fail (like pl fail) if the value
returned by the previous C function call is 0. This
instruction is used after a C function call returning a
boolean to indicate its issue (e.g. functions performing
unifications).

jump ret: branch the execution to the address returned by
the previous C function call. This instruction makes

2

it possible to use C functions to determine where to
transfer the control. For instance, the WAM index-
ing instruction switch on term is implemented via a
C function which returns the address of the selected
code.

move ret target : copy the value returned by the previous
C function call to target which can be either a mem-
ory location or a WAM X or Y register.

The MA declarations are presented now. The keyword local

specifies a local symbol (only visible in the current object)
while global allows other object to see that symbol.

pl code local/global pl label : define a Prolog predi-
cate whose corresponding symbol is pl label . For
the moment all predicates are global (i.e. visible by
all other Prolog objects). But local will be used when
implementing a module system.

c code local/global/initializer label : define a func-
tion that can be called by a C function. The use of
initializer ensures that this function will be exe-
cuted first, when the Prolog engine is started. Only
one function can be declared as initializer.

long local/global ident = value : allocate the space
for a long variable whose name is ident and initial-
izes it with the integer value . The initialization is
optional (i.e. the = value part can be omitted).

long local/global ident (Size) : allocate the space for
an array of Size longs whose name is ident .

3.3 From the mini-assembly to the assembly
The next stage of the compilation process consists in map-
ping the MA file to the assembly of the target machine.
Since MA is based on a reduced instruction set, the writing
of such translators is simplified. However, producing ma-
chine instructions is not an easy task. The first translator
was written with the help of a C file produced by wamcc.
Indeed, compiling this file to assembly with gcc gave us
a first solution for the translation (since the MA instruc-
tions corresponds to a subset of that C code). We have
then generalized this by defining a C file (independently
from wamcc) whose compilation to assembly is a good start-
ing point when porting GNU Prolog to a new architecture.
Mappings from MA to target machines currently include
SunOS/Sparc, Solaris/Sparc, Linux/ix86, Linux/PowerPC,
Win95-98-NT/ix86, new ports are under development.

3.4 From objects to the executable
At link-time all objects are linked together with the Pro-
log libraries: Prolog built-in predicate library, FD built-in
constraint/predicate library and run-time library. This last
library contains in particular functions implementing WAM
instructions. Linked objects come from: Prolog source, user
C foreign code or FD constraint definition. This stage re-
solves external symbols (e.g. a call to a predicate defined in
another module). Since a Prolog source gives rise to a clas-
sical object, several objects can be grouped in a library (e.g.
using ar under Unix). The Prolog and FD built-in libraries
are created using this way. Defining a library allows the
linker to only extract from it needed objects (i.e. containing
referenced functions/data). For this reason, the GNU Pro-
log compiler can generate small executables by avoiding the
inclusion of most unused built-in predicates.

4. PROLOG PERFORMANCE
We have tested the performances of GNU Prolog on a classi-
cal set of Prolog benchmarks (see table below). Compilation
timings are rather good and we reached our initial goal since
GNU Prolog compiles 5-10 times faster than wamcc+gcc

while produced code is as fast as wamcc. The raw compila-
tion speed is about 1000 lines per second on a Pentium 400
Mhz machine, recalling than the declarative and high-level
aspect of Prolog makes it much more concise than C. The
size of (stripped) objects is really small (less than 10 KBytes
for many benchmarks) and shows that this approach really
generates small code. The ability of GNU Prolog to produce
small executables is an important feature that makes it pos-
sible to use them in many occasions (tools, web CGIs,...).
We have compared GNU Prolog with a commercial system:
SICStus prolog and two academic systems: XSB-Prolog and
SWI-Prolog. Table 1 presents execution times for those sys-
tems and the average speedup of GNU Prolog on a classical
set of benchmarks (the nand program could not be compiled
under XSB-Prolog). Timings are in seconds measured on a
Pentium II 400 Mhz under Linux. In the heavyweight cate-
gory, GNU Prolog is 1.2 times faster than SICtus emulated.
To be fair let us mention that SICStus Prolog can compile to
native code for some architectures (e.g. under SunOS/sparc
but not yet under linux/ix86) and then it will be 2.5 times
faster than GNU Prolog on those platforms. However, in
the academic league, GNU Prolog is around 2.5 times faster
than XSB-Prolog and more than 5 times faster than SWI-
Prolog (without taking into account the tak benchmark).

GNU Sicstus XSB SWI
Prolog Prolog Prolog Prolog

Program 1.0.5 3.7.1 1.8.1 3.2.8

boyer 0.332 0.324 0.889 1.424
browse 0.430 0.424 0.837 1.274
cal 0.030 0.074 0.146 0.328
chat parser 0.080 0.092 0.254 0.252
crypt 0.006 0.006 0.004 0.034
ham 0.304 0.340 0.634 0.770
meta qsort 0.006 0.004 0.014 0.034
nand 0.018 0.018 ?.??? 0.072
nrev 0.044 0.036 0.096 0.206
poly 10 0.028 0.024 0.062 0.104
queens (16) 0.238 0.416 0.802 2.374
queens n (10) 1.148 1.262 0.002 4.288
reducer 0.022 0.026 0.066 0.094
sdda 0.002 0.002 0.002 0.034
sendmore 0.026 0.046 0.088 0.182
tak 0.038 0.072 0.164 30.510
zebra 0.026 0.020 0.044 0.060

GNU Prolog speedup 1.2 2.4 5.7

Table 1: GNU Prolog versus other Prolog systems

5. CONSTRAINT SOLVING
Constraint Programming is a widely successful extension of
Logic Programming, which has proved to have a significant
impact for a variety of industrial applications, see [9]. It is
thus natural to include a constraint solving extension to any
modern Prolog-based system.

3

GNU Prolog compiles finite domain constraints in the same
way as its predecessor clp(FD), described in [5; 6]. It is
based on the so-called “RISC approach” which consists in
translating at compile-time all complex user-constraints (e.g.
disequations, linear equations or inequations) into simple,
primitive constraints (the FD constraint system) at a lower
level which really embeds the propagation mechanism for
constraint solving.

5.1 The FD Constraint System
The FD constraint system is a general purpose constraint
framework for solving discrete constraint satisfaction prob-
lems (CSPs). It has been originally proposed by Pascal Van
Hentenryck in a concurrent constraint setting [12], an effi-
cient implementation in the clp(FD) system is described in
[5; 6]. FD is based on a single primitive constraint by which
complex constraints are defined, so for example constraints
such as X = Y or X ≤ 2Y are defined by FD constraints,
instead of being built into the theory. Each constraint is
thought of as a set of propagation rules describing how the
domain of each variable is related to the domain of other
variables, i.e. rules for describing node and arc consistency
propagation (see for instance [10] for more details on CSPs
and consistency algorithms).
A constraint is a formula of the form X in r where X is a
variable and r is a range. A range in FD is a (non empty) fi-
nite set of natural numbers. Intuitively, a constraint X in r
enforces X to belong to the range denoted by r. Such a range
can be not only a constant range (e.g. 1..10) but also an in-
dexical range when it contains one or more of the following:

• dom(Y), that represents the current domain of Y ;

• min(Y), the minimal value of the current domain of
Y ;

• max(Y), the maximal value of the current domain of
Y .

When an X in r constraint uses an indexical depending on
another variable Y it becomes store-sensitive and must be
checked each time the domain of Y is updated. This is how
consistency checking and domain reduction is achieved.
Complex constraints such as linear equation or inequations,
as well as symbolic constraints can be defined in terms of the
FD constraint system, see [6]. For instance, the constraint
X ≤ Y , is translated as follows:

X≤Y ≡ X in 0..max(Y) ∧ Y in min(X)..∞

Observe that this translation has also an operational flavor,
and specifies, for a given n-ary constraint, how a variable
domain has to be updated in terms of the other variable.
For example, in the FD constraint X in 0..max(Y), when-
ever the largest value of the domain of Y changes (that is,
decreases), the domain of X gets reduced. If instead the do-
main of Y changes but its largest value remains the same,
then the domain of X does not change. One can therefore
consider those primitive X in r constraints as a low-level
language in which the propagation scheme has to be ex-
pressed. Indeed, one can express in the constraint definition
(that is, the translation of a high-level user constraint into
a set of primitive constraints) the propagation scheme cho-
sen to solve the constraint, such as forward-checking, full or
partial look-ahead, depending on the use of dom or min/max
indexical terms.

5.2 Finite Domain constraints in GNU Prolog
In GNU Prolog we have designed a specific language to de-
fine FD constraints in a flexible and powerful way. Indeed,
the basic X in r primivite does not offer a way to define
reified constraints (except via a C user function) and does
not allow the user to control the propagation triggers. The
need of symbolic constraints like element/3 also enhanced
the need of handling list of variables at the primitive level.
Due to restricted space in this paper we simply present ex-
amples of constraint definitions with this language.
Let us define a constraint X + C = Y (X and Y are FD
variables, C is an integer):

x_plus_c_eq_y(fdv X,int C,fdv Y)

{

start X in min(Y) - C .. max(Y) - C

/* X = Y - C */

start Y in min(X) + C .. max(X) + C

/* Y = X + C */

}

The head defines, in a C-like syntax, the name of the con-
straint (x plus c eq y) and for each argument its type (fdv,
int) and its name. The keyword start activates an X in r
primitive. The first states that the bounds of X must be be-
tween min(Y)− C and max(Y)− C. Similarly, the second
indicates how to update Y from X.
Let us consider a more complex example and define so-called
reified constraints by using the facility offered by the lan-
guage to delay the activation of an X in r constraint. The
following example illustrates how to define X = C ⇔ B
where X is an FD variable, C an integer and B a boolean
variable (i.e. an FD variable whose domain is 0..1) which
captures the truth value of the constraint X = C. The def-
inition below waits until either the truth of X = C or the
value of B is known:

truth_x_eq_c(fdv X,int C,fdv B)

{

wait_switch

case max(B)==0 /* case : B = 0 */

start X in ~{ C } /* X != C */

case min(B)==1 /* case : B = 1 */

start X in { C } /* X = C */

case min(X)>C || max(X)<C

/* case : X != C */

start B in { 0 } /* B = 0 */

case min(X)==C && max(X)==C

/* case : X = C */

start B in { 1 } /* B = 1 */

}

The constraint definition language is compiled to C by the
fd2c sub-compiler. Each constraint gives rise to a C function
returning a boolean depending on the issue of the addition
of the constraint to the store. The link between Prolog and
a constraint is done by a specific Prolog predicate fd tell/1

which is in fact compiled to a call to the corresponding C
function. For instance, to define the previous constraint one
would declare a predicate ’x=c <=> b’/3 as follows :

’x=c <=> b’(X,C,B) :- fd_tell(truth_x_eq_c(X,C,B)).

4

The C source file obtained from an FD definition file is sub-
mitted to the C compiler to obtain an object which is then
included by the linker.

5.3 Benchmarking FD constraints
The performances of the FD constraint solver of GNU Pro-
log is the same as clp(FD) [6], that is, equivalent to the
Ilog Solver commercial C++ system from ILOG and on av-
erage twice as fast as CHIP, a commercial constraint logic
programming system from Cosytec, on a similar subset of
constraints.

In this section we compare the FD constraint solver with
the one of SICStus Prolog. As the syntax and the set of
predefined constraints is not the same in both systems we
use some examples provided with SICStus. Since we are
interested here in comparing the raw performance of the
implementation of the solvers (and the not their expressive
power) we selected benchmarks with a similar formulation
in both systems for which we can expect both solvers to
perform the same computations. Table 2 presents execution
times for both solvers and the speedup for GNU Prolog. On
average GNU Prolog is around 4 times faster than SICStus
Prolog.

GNU Sicstus Speedup
Prolog Prolog

Program 1.0.5 3.7.1

crypta 0.008 0.012 1.5
eq10 0.006 0.020 3.3
eq20 0.010 0.030 3.0
donald 0.210 0.820 3.9
alpha 0.450 2.880 6.4
alpha ff 0.010 0.030 3.0
queens 16 0.050 0.270 5.4
cars all 0.015 0.060 4.0

Table 2: GNU Prolog FD solver versus SICStus FD solver

6. CONCLUSION
GNU Prolog is a free Prolog compiler with constraint solv-
ing over finite domains. The Prolog part of GNU Prolog
conforms to the ISO standard for Prolog with also many
extensions very useful in practice (global variables, OS in-
terface, sockets,etc). The finite domain constraint part of
GNU Prolog contains all classical arithmetic and symbolic
constraints, and integrates also an efficient treatment of rei-
fied constraint and boolean constraints. GNU Prolog pro-
duces native binaries and the executable files produced are
stand alone. The size of those executable files can be quite
small since GNU Prolog can avoid to link the code of most
unused built-in predicates. The performances of GNU Pro-
log are close to commercial systems, both in the Prolog and
the Constraint parts.

7. REFERENCES

[1] H. Aı̈t-Kaci. Warren’s Abstract Machine, A Tutorial
Reconstruction. Logic Programming Series, MIT Press,
1991.

[2] M. Carlsson. Design and Implementation of an Or-
Parallel Prolog Engine. PhD dissertation, SICS, Swe-
den, 1990.

[3] J. Chailloux. La machine LLM3. Technical Report RT-
055, INRIA, 1985.

[4] P. Codognet and D. Diaz. wamcc: Compiling Prolog to
C. In 12th International Conference on Logic Program-
ming, Tokyo, Japan, MIT Press, 1995.

[5] P. Codognet and D. Diaz. A Minimal Extension of
the WAM for clp(FD). In Proc. ICLP’93, 10th Inter-
national Conference on Logic Programming. Budapest,
Hungary, MIT Press, 1993.

[6] P. Codognet and D. Diaz. Compiling Constraint in
clp(FD). Journal of Logic Programming, Vol. 27, No.
3, June 1996.

[7] Information technology - Programming languages -
Prolog - Part 1: General Core. ISO/IEC 13211-1, 1995.

[8] J. Jaffar and J-L. Lassez. Constraint Logic Program-
ming. In Principles Of Programming Languages, Mu-
nich, Germany, January 1987.

[9] V. Saraswat, P. Van Hentenryck, P. Codognet et al.
Constraint Programming. ACM Computing Surveys,
vol. 28, no. 4, Dec. 1996.

[10] E. Tsang. Foundations of Constraint Satisfaction. Aca-
demic Press, 1993.

[11] P. Van Hentenryck. Constraint Satisfaction in Logic
Programming. Logic Programming Series, The MIT
Press, 1989.

[12] P. Van Hentenryck, V. Saraswat and Y. Deville. Con-
straint processing in cc(FD). In Constraint Program-
ming : Basics and Trends, A. Podelski (Ed.), LNCS
910, Springer Verlag 1995. First version: Research Re-
port, Brown University, Jan. 1992.

[13] P. Van Roy and A. Despain. High-Performance Logic
Programming with the Aquarius Prolog Compiler.
IEEE Computer, pp 54-67, 1992.

[14] D. H. D. Warren. An Abstract Prolog Instruction Set.
Technical Report 309, SRI International, Oct. 1983.

5

	Introduction
	Motivation and Background
	Prolog compilation scheme
	From Prolog to the WAM
	From the WAM to the mini-assembly (MA)
	From the mini-assembly to the assembly
	From objects to the executable

	Prolog Performance
	Constraint Solving
	The FD Constraint System
	Finite Domain constraints in GNU Prolog
	Benchmarking FD constraints

	Conclusion
	REFERENCES

