
Design and Implementation of the GNU
Prolog System

Daniel Diaz Philippe Codognet
University of Paris 1 University of Paris 6
CRI, bureau C1407 LIP6, case 169
90, rue de Tolbiac 8, rue du Capitaine Scott

75013 Paris, FRANCE 75015 Paris, FRANCE
and INRIA-Rocquencourt and INRIA-Rocquencourt
Daniel.Diaz@inria.fr Philippe.Codognet@lip6.fr

Abstract

In this paper we describe the design and the implementation of the GNU Pro-
log system. This system draws on our previous experience of compiling Prolog
to C in the wamcc system and of compiling finite domain constraints in the
clp(FD) system. The compilation scheme has however been redesigned in or-
der to overcome the drawbacks of compiling to C. In particular, GNU-Prolog is
based on a low-level mini-assembly platform-independent language that makes
it possible to avoid compiling C code, and thus drastically reduces compilation
time. It also makes it possible to produce small stand-alone executable files as
the result of the compilation process. Interestingly, GNU Prolog is now com-
pliant to the ISO standard, includes several extensions (OS interface, sockets,
global variables, etc) and integrates a powerful constraint solver over finite
domains. The system is efficient and in terms of performance is comparable
with commercial systems for both the Prolog and constraint aspects.

1 Introduction

GNU Prolog is a free Prolog compiler supported by the GNU organization
(http://www.gnu.org/software/prolog). It is a complete system which in-
cludes: floating point numbers, streams, dynamic code, DCG, operating sys-
tem interface, sockets, a Prolog debugger, a low-level WAM debugger, line
editing facilities with completion on atoms, etc. GNU Prolog offers more than
300 Prolog built-in predicates and is compliant to the ISO standard for Prolog

1

[7] (GNU Prolog is today the only free Prolog system that is really compli-
ant to this standard). There is also a powerful bidirectional interface between
Prolog and C, featuring implicit Prolog ↔ C type conversion, transparent I/O
argument handling, non-deterministic C code, ISO error support, etc. Such an
interface allows users to easily write their own extensions. GNU Prolog also
includes an efficient constraint solver over finite domains (FD), similar to that
of the clp(FD), described in [5, 6]. The key feature of such a solver is the use
of a simple (low-level) language that embeds the core propagation mechanism
in order to define all (high-level) FD constraints. There are many advantages
to this approach: constraints can be compiled, the user can define his own con-
straints (thanks to the definition language), the solver is open and extensible
(as opposed to black-box solvers like the CHIP system by Cosytec). The solver
does, however, already include many predefined constraints: arithmetic con-
straints, boolean constraints, symbolic constraints, reified constraints; there
are more than 50 FD built-in constraints/predicates, and several predefined
labeling heuristics.

The development of GNU Prolog started in January 1996 under the name of
Calypso. Discussions with the GNU organization started in late 1998, and the
first version was released in April 1999 as a GNU product. Two years later more
than 25,000 copies have been downloaded from the INRIA ftp site (there are no
statistics available for the main GNU ftp site nor for mirror sites) and GNU
Prolog is now included in most commercial Linux distributions (Mandrake,
Debian, etc).

GNU Prolog stems from our previous work on wamcc which was based on the
idea of translating Prolog to C [4]. The novelty of the GNU Prolog compilation
scheme is that it uses a mini-assembly (MA) language to avoid the interme-
diate step of compiling to C. This language has been specifically designed for
GNU Prolog. The idea of the MA is then to have a machine-independent
intermediate language in which Prolog is translated via the WAM (Warren
Abstract Machine), the standard high-level abstract machine for Prolog com-
pilation. The corresponding MA code is mapped to the assembly language of
the target machine. The MA language is based on a reduced instruction set
in order to simplify porting over various architectures. This new compilation
process is from 5 to 10 times faster than wamcc+gcc.

The rest of this paper is organized as follows. Section 2 is devoted to the
compilation scheme. Section 3 recalls the basic compilation from Prolog to the
WAM. Section 4 introduces the MA language while Section 5 describes how
this language can be mapped to a specific architecture. Section 6 is devoted to
the link phase and Section 7 to memory management. Performance evaluation

2

of the Prolog engine is detailed in Section 8. The constraint solver and its
performance are presented in Section 9. A short conclusion ends the paper.

2 General compilation scheme

2.1 Background

Traditionally, compilers for imperative, functional or logical languages decom-
pose the compilation process into several steps and in particular use an abstract
machine as an intermediate level between the high-level source code and the
target low-level executable code. Indeed, since Pascal and the P-code, abstract
machines have been highlighted as the backbone of the compilation process.

Logical languages are no exception and the compilation of Prolog to the WAM
(Warren Abstract Machine [14]) is a de facto standard and well-known process.
However, WAM code cannot be executed directly on mainstream computers
and therefore requires some treatment in order to become executable. Clas-
sical techniques consist either in executing directly the WAM code with an
emulator written in C (the original version of SICStus Prolog [2]) or assembler
(Quintus Prolog) or directly compiling to native code (Prolog by BIM, latest
version of SICStus Prolog, Aquarius Prolog [13]). Another approach consists
in translating Prolog to C, a choice made to keep the implementation simple
without penalizing too greatly its performance. The wamcc Prolog compiler
was based on this approach, but also incorporated the idea of translating a
WAM branching into a native code jump in order to reduce the overhead of
calling a C function, see [4] for details. There is however a serious drawback to
this approach, which is the size of the C file generated and the time taken to
compile such a large program by standard C compilers (e.g. gcc). Indeed, a
Prolog program produces a large number of WAM instructions (e.g. the 3,263
lines of pl2wam, the Prolog to WAM compiler, gives rise to 12,077 WAM in-
structions) and trying to inline each WAM instruction could lead to a very big
C file that could not be handled by the C compiler. In order to cope with large
Prolog source we decided, in wamcc, to translate most WAM instructions to a
call to a C function which perfors the treatment. Obviously the execution is a
little slower but the compilation is much faster (and the executable is smaller).
However, even with this solution, the C compiler took too much time for large
source files, especially in trying to optimize the code produced.

The main improvement to the GNU Prolog compilation scheme is to translate a

3

WAM file into a mini-assembly language which is machine-independent. The
corresponding MA code is mapped to the assembly language of the target
machine. In order to simplify the writing (i.e. porting) of such translators
the instruction set of MA must be simple, in the spirit of the LLM3 abstract
machine for Lisp [3], as opposed to the complex instruction set of the BAM
designed for Aquarius Prolog [13]. Actually, the MA language is based on 11
instructions, most of which handle the control of Prolog and the invocation of
C functions.

2.2 Overview

Native compilation is handled by gplc, the GNU Prolog command-line com-
piler which invokes several sub-compilers to produce an executable from a
Prolog source. Classically the source file is used to obtain an object which is
linked to the GNU Prolog libraries to produce an executable. To do so, the
Prolog source is first compiled to obtain a WAM file. The WAM file is trans-
lated to an MA file. This file is then mapped to the assembly language of the
target machine which next gives rise to an object. All objects are linked with
the GNU Prolog libraries to provide an executable. The compiler also takes
into account finite domain constraint definition files. It translates them to C
and invokes the C compiler to obtain object files, as explained below. Figure 1
presents this compilation scheme.

Obviously all intermediate stages are hidden to the user who simply invokes
the compiler on his Prolog file(s) (plus other files: C foreign file, FD files, etc)
and obtains an executable. However, it is also possible to stop the compiler
at any given stage, which may be useful, for instance, to view the WAM code
produced. Finally it is possible to give any kind of file to the compiler which
will insert it in the compilation chain at the stage corresponding to its type.
The type of a file is determined using the suffix of its file name. The following
table presents all recognized types/suffixes:

Suffix of the file Type of the file Handled by:

.pl, .pro Prolog source file pl2wam

.wam WAM source file wam2ma

.ma Mini-assembly source file ma2asm

.s Assembly source file assembler

.c, .C, .c++, .cpp,. . . C or C++ source file C compiler

.fd FD constraint source file fd2c

other file (.o, .a,. . .) any other type (object, library,. . .) linker

4

WAM
files

Prolog
files

mini-assembly
files

assembly
files

object
files

FD constraint
definition files

Prolog/FD libraries
and user libraries

pl2wam

wam2ma

ma2asm

linker

fd2c

C files

C compilerassembler

executable

Figure 1: compilation scheme

5

3 From Prolog to the WAM

The pl2wam sub-compiler accepts a Prolog source and produces a WAM file.
For more information about the WAM see [14, 1]. We will not describe in
great detail this compiler as a lot of information is available in the literature.

This compiler is fully written in GNU Prolog (3,263 lines of Prolog code) and
bootstrapped. It compiles each clause in several passes:

• the clause is simplified: control constructs like disjunctions, if-then or
cut are rewritten (giving rise to auxiliary predicates if needed).

• the clause is translated into a more practical internal format. Variables
are classified as being permanent or temporary. Permanent variables are
assigned.

• the WAM code associated to the clause is generated.

• registers (temporary variables) are assigned and optimized.

The code of all the clauses of a predicate are grouped and the indexing code
is generated. For further details the reader can refer to [2].

The WAM file produced by pl2wam is a text file complying to the Prolog
syntax. This makes it possible to provide a WAM file (produced by another
Prolog to WAM compiler using the appropriate syntax) to gplc but also to
pass the WAM file to any emulator, e.g. a system written in Prolog.

This compiler benefits from many (well-known) optimizations: register opti-
mization, unification reordering, inlining, last subterm optimization, etc. Most
of these optimizations can be deactivated using command-line options. Deac-
tivating all the options makes it possible to study the basic Prolog to WAM
compilation process.

The following example shows the compilation of the clause p(T,g(U),V):-

q(a,T,V,U) without any optimization:

% gplc -W --no-reorder --no-reg-opt t.pl

% cat t.wam

file_name(’t.pl’). % current file name: t.pl

6

predicate(p/3,1,static,private,user,[% p/3 defined at line #1

get_variable(x(5),0), % p(T,

get_structure(g/1,1), % g(

unify_variable(x(4)), % U),

get_variable(x(3),2), % V):-

put_atom(a,0), % q(a,

put_value(x(5),1), % T,

put_value(x(3),2), % V,

put_value(x(4),3), % U).

execute(q/4)]).

The WAM code associated to a predicate is given as a Prolog list. Some other
information is present such as the file name (t.pl) and the line number (1)
where p/3 is defined (this information could be exploited by a graphical editor).
The properties of p/3 are also specified: static (as opposed to dynamic),
private (as opposed to public) and user (to distinguish between user-defined
and built-in predicates).

We present below the same example without unification reordering but with
register optimization and keeping void instructions 1 in the WAM file:

% gplc -W --no-reorder --keep-void-inst t.pl

% cat t.wam

file_name(’t.pl’).

predicate(p/3,1,static,private,user,[

get_variable(x(4),0),

get_structure(g/1,1),

unify_variable(x(3)),

get_variable(x(2),2),

put_atom(a,0),

put_value(x(4),1),

put_value(x(2),2),

put_value(x(3),3),

execute(q/4)]).

Now we show the same example fully optimized, with register optimization
and unification reordering:

1A void instruction is a copy instruction where the source register is the the same as the
destination.

7

% gplc -W t.pl

% cat t.wam

file_name(’t.pl’).

predicate(p/3,1,static,private,user,[

get_structure(g/1,1),

unify_variable(x(3)),

put_value(x(0),1),

put_atom(a,0),

execute(q/4)]).

4 The mini-assembly language

4.1 Overview

The idea behind the mini-assembly (MA) language is to have a machine-
independent intermediate language in which the WAM is translated. The
design of the MA comes from the study of the C code produced by wamcc.
Indeed, in the wamcc system, most WAM instructions gave rise to a call to a C
function which carried out the treatment. The only exceptions were obviously
instructions to manage the control of Prolog and some short instructions that
were inlined. The MA language has been designed to avoid the use of the C
stage and therefore provides instructions to handle the Prolog control, to call
a C function and to test/use its returned value. The MA file is then mapped
to the assembly of the target machine (see Section 5) from which an object is
produced.

In order to simplify the writing of the mappers responsible for translating MA
code, the MA instruction set must be simple: it only contains 11 instructions.

4.2 The MA instruction set

Here is a description of each MA instruction:

pl jump pl label : branch the execution to the predicate whose correspond-
ing symbol is pl label . This symbol is an identifier whose construction

8

is explained in Section 4.3. This instruction corresponds to the WAM
instruction execute.

pl call pl label : branch the execution to the predicate whose correspond-
ing symbol is pl label after initializing the continuation register CP to
the address of the very next instruction. This instruction corresponds to
the WAM instruction call.

pl ret: branch the execution to the address given by the continuation pointer
CP. This instruction corresponds to the WAM instruction proceed.

pl fail: branch the execution to the address given by the last alternative
(ALT cell of the last choice point pointed by the WAM B register). This
instruction corresponds to the WAM instruction fail.

jump label : branch the execution to the symbol label , which could be any
internal label. This instruction is used when translating WAM indexing
instructions (e.g. try, retry or trust) to perform local control transfer,
i.e. branching within the same predicate. This instruction has been dis-
tinguished from pl jump (even if both can be implemented/translated in
a similar manner) since, on some machines, local jumps can be optimized.

call c fct name (arg ,...): call the C function fct name passing the argu-
ments arg ,... Each argument can be an integer, a floating point number
(C double), a string, the address of a label, the address or the content of
a memory location, the address or the content of a WAM X or Y register.
This instruction is used to translate most WAM instructions.

fail ret: perform a Prolog fail (like pl fail) if the value returned by the
previous C function call is 0. This instruction is used after a C function
call returning a boolean to indicate its issue (e.g. functions performing
the unification).

jump ret: branch the execution to the address returned by the previous C
function call. This instruction makes it possible to use C functions to
determine where to transfer the control to. For instance, the WAM
indexing instruction switch on term is implemented via a C function
accepting several addresses and returning the address of the selected
code.

move ret target : copy the value returned by the previous C function call in
target which can be either a memory location or a WAM X or Y register.

c ret: C return. This instruction is used at the end of the initialization func-
tion (see below) to give the control back to the caller.

9

move reg1 ,reg2 : copy the content of the WAM X or Y register reg1 in the
register reg2 .

It is worth noticing the minimality of the language which is based on a very
restricted instruction set. Note however the presence of the move instruction
to perform a copy of WAM X or Y registers. We could instead invoke a
C function to perform such a move (using call c). However, those moves
between registers are rather frequent and the invocation of a C function would
be costly in terms of execution time. Thus a trade off must be found between
the minimality of the instruction set and the performance. Obviously, it would
be possible to extend this instruction set (e.g. adding arithmetic instructions)
but this would make the writing of the mappers much more complicated.

In addition to the above instructions, the MA language also includes several
declarations. In the following, the keyword local is used for a local symbol
(only visible in the current object) while global allows other object to see
that symbol.

pl code local/global pl label : define a Prolog predicate whose associ-
ated symbol is pl label . For the moment all predicates are global

(i.e. visible by all other Prolog objects). But local will be used when
implementing a module system.

c code local/global/initializer label : define a function that can be
called by a C function. The use of initializer ensures that this func-
tion will be executed first, when the Prolog engine is started. Only one
function per file may be declared as initializer.

long local/global ident = value : allocate the space for a long variable
whose name is ident and initialize it with the integer value . The
initialization is optional (i.e. the = value part may be omitted).

long local/global ident (Size): allocate the space for an array of Size

longs whose name is ident .

The WAM → MA translation can be performed in linear time w.r.t. the size
of the WAM file (the translation is performed on the fly while the WAM file
is being read).

10

4.3 Associating an identifier to a predicate name

Since the MA language is later mapped to the assembly of the target machine
only classical identifiers can be used (a letter followed by letters, digits or
the underscore character). In particular, it is necessary to associate such an
identifier to each predicate (referenced as pl label in Section 4.2). Since
the syntax of identifiers is more restrictive than the syntax of Prolog atoms
(which can include any character using quotes) GNU Prolog uses a hexadecimal
representation where each predicate name is translated into a symbol beginning
with an X followed by the hexadecimal notation of the code of each character
of the name followed by an underscore and the arity. For instance append/3 is
coded by the symbol X617070656E64 3 (61 is the hexadecimal representation
of the code of a, 70 is associated to p, etc). The linker is then responsible
for resolving external references (e.g. call to built-in predicates or to user
predicates defined in another object). The output of the linker is filtered by
GNU Prolog to decode eventual hexadecimal notations in the case of errors
(e.g. an undefined predicate, multiple definitions for a predicate).

4.4 An example

Here we present the MA code associated to the simple clause p(T,g(U),V):-

q(a,T,V,U). Associated WAM instructions are shown as comments.

% gplc -M --comment t.pl
% cat t.ma
pl_code global X70_3 ; define predicate p/3

call_c Get_Structure_Tagged(fn(0),X(1)) ; get_structure(g/1,1)
fail_ret
call_c Unify_Variable() ; unify_variable(x(3))
move_ret X(3)
move X(0),X(1) ; put_value(x(0),1)
call_c Put_Atom_Tagged(ta(0)) ; put_atom(a,0)
move_ret X(0)
pl_jump X71_4 ; execute(q/4)

; table definitions
long local at(2) ; 2 atoms
long local ta(1) ; 1 tagged atom
long local fn(1) ; 1 functor/arity

c_code initializer Object_Initializer ; object initializer

11

call_c Create_Atom("t.pl") ; atom #0 is ’t.pl’
move_ret at(0)
call_c Create_Atom("p") ; atom #1 is ’p’
move_ret at(1)
call_c Create_Atom_Tagged("a") ; tagged atom #0 is ’a’
move_ret ta(0)
call_c Create_Functor_Arity_Tagged("g",1); func/arity #0 is g/1
move_ret fn(0)
call_c Create_Pred(at(1),3,at(0),1,1,&X70_3)
c_ret ; record predicate p/3

It is easy to see that most WAM instructions give rise to a C function call (e.g.
call c Get Structure Tagged()). Calls to functions that can fail (unifica-
tion) are followed by a fail ret that performs a Prolog fail if the returned
value is 0. Note the presence of the MA instruction move to perform a copy of
WAM registers (associated to the WAM instruction put value(x(0),1)).

According to the encoding presented in Section 4.3, the symbol X70 3 is asso-
ciated to p/3 (and X71 4 to q/4) .

It might be worthwhile here looking at how atoms are managed. Classically
all atoms are stored in a hash-table. As GNU Prolog is not restricted to a
single source file, but allows for separate linking, the hash-table must be built
at run-time. That is why the Object Initializer function is first invoked
and is responsible for updating the atom table with the atoms required by
the object. The Create Atom function adds an atom to the hash table (if not
already present) and returns its associated hash value (key) which is stored in
a local array (at(atom number)). The Create Atom Tagged function is sim-
ilar but returns a tagged WAM word instead of only the key. All the atoms
used in WAM instructions (e.g. put atom) are thus tagged only once by the
initializer function and stored in a local array (ta(atom number)). Similarly,
all <functor/arity> pairs used by WAM instructions (e.g. get structure)
are computed once and stored in a local array (fn(f n number)). The initial-
ization function also updates the predicate table with predicates defined in the
current object. The Create Pred function updates this table with the name
and the arity of the predicate, the file name and the line number where it is
defined, a mask encoding its properties (public/private, static/dynamic, user-
defined/built-in) and the address of the code. It is worth noticing that this
table is not needed for native execution since all static references are resolved
by the linker. However, it is useful to implement some built-in predicates like
current predicate/1 and, more importantly, to implement meta-call (e.g.
call/1) since it is necessary to find the address of the code associated to a

12

predicate (given as a Prolog term). The way in which the initializer function
is automatically invoked at run-time is explained below in Section 6.

5 Mapping the mini-assembly to a target ma-

chine

The next stage of the compilation process consists in mapping the MA file to
the assembly language of the target machine. Since MA is based on a reduced
instruction set, the writing of such mappers is simplified. However, producing
machine instructions is not an easy task. The first mapper was written with
the help of a C file produced by wamcc. Indeed, compiling this file to assembly
with gcc gave us a starting point for the translation (since the MA instructions
correspond to a subset of that C code). We then generalized this approach by
defining a C file (now independently from wamcc). Each portion of this C code
corresponds to an MA instruction and the study of the assembly code produced
by gcc is a good starting point. This gives preliminary information about
register conventions, C calling conventions, etc. However, to further optimize
the assembly code it is necessary to refer to the technical documentation of
the processor together with the ABI (Application Binary Interface) used by
the operating system.

Here is the relevant portion of the linux/ix86 assembly code corresponding to
the definition of p/3 (the associated MA code is shown as comments):

% gplc -S --comment t.pl
% cat t.s
.text
fail:

jmp *-4(%ebp) # fail

.globl X70_3
X70_3:

movl fn+0,%eax # call_c Get_Structure_Tagged(fn(0),X(1))
movl reg_bank+4,%edx
call Get_Structure_Tagged
testl %eax,%eax # fail_ret
je fail
call Unify_Variable # call_c Unify_Variable()
movl %eax,reg_bank+12 # move_ret X(3)

13

movl reg_bank+0,%eax # move X(0),X(1)
movl %eax,reg_bank+4
movl ta+0,%eax # call_c Put_Atom_Tagged(ta(0))
call Put_Atom_Tagged
movl %eax,reg_bank+0 # move_ret X(0)
jmp X71_4 # pl_jump X71_4

.data
.local at # long local at(2)
.comm at,8,4
.local ta # long local ta 1
.comm ta,4,4
.local fn # long local fn 1
.comm fn,4,4

Here again, a crucial point is that the mapping MA → assembly is executed
in linear time w.r.t. the size of the MA file (the translation is done on the fly
while the MA file is being read). Obviously the translation into the assem-
bly language of a given machine makes several optimizations possibles. For
instance the ix86 mapper uses 2 registers: ebx stores the value of TR (the
trail top WAM register) and ebp stores the value of the B WAM register (last
choice point). Other registers are stored in a global array (reg bank) which
consists of 256 X registers (WAM arguments) followed by the rest of the WAM
registers (H, CP, ...)2. More generally, it is possible to use machine registers if
it is ensured that they are saved and restored by the functions using them (the
ABI gives this information).

Note the definition of a fail label which performs a WAM fail. The associ-
ated code branches to the value of the ALT cell of that choice-point (stored at
the offset -1(*4 bytes) from B). Since B is kept in a machine register this can
be achieved with only one instruction.

Let us take a closer look at how a C function is invoked. Firstly, all arguments
are first loaded and then the function is called. Under ix86, the arguments
are passed into the stack (as usual for CISC processors). The classical way
to call a C function is then to use push instructions to initialize arguments,
to call the function and, after the return of the function, either to use several
pop instructions or to perform a stack pointer adjustment (adding a positive
number to it). One possible optimization is to use a fastcall calling convention
consisting in passing up to three arguments into registers (eax, edx and ecx in

2On RISC machines the base of this bank is stored in a global register since access to a
global variable requires 2 cycles while using a global register makes it possible to access any
WAM register in only 1 cycle.

14

that order). In this way, only those functions which require more than three
arguments will use the stack to store the rest of the arguments. In order to
avoid the problem of stack adjustments at the end of the C function, GNU
Prolog does not push the arguments but instead reserves, at the start of the
Prolog engine, enough space in the stack and then copies arguments on that
space using a move instruction (with a positive offset relative to esp) instead
of a push instruction. This scheme is adopted mostly for reasons of simplicity
and has hardly any impact on performance.

Further machine-specific optimizations could be achieved, e.g. short branching
detection, but this would require a multi-pass mapper.

6 Linking

At link-time all objects are linked with the GNU Prolog libraries: Prolog
built-in predicate library, FD built-in constraint/predicate library and run-
time library. In particular this last library includes all the functions which
implement WAM instructions (e.g. Put Atom Tagged()). Linked objects come
from: Prolog sources, user-written C foreign code or FD constraint definitions.
This stage resolves external symbols (e.g. a call to a predicate defined in
another module).

Since a Prolog source gives rise to a classical object file, several objects can
be grouped in a library (e.g. using ar under Unix). The Prolog and FD
built-in libraries are created in this way (and the user can also define his own
libraries). Defining a library allows the linker to extract only the object files
that are necessary (i.e. those containing referenced functions/data). For this
reason, GNU Prolog can generate small executables by avoiding the inclusion
of most unused built-in predicates. To optimally reduce this size, the linker
should exclude all (rather than most) unused predicates. To do this we should
define one built-in predicate per Prolog file (similar to what is done for the
standard C library) since the object is the unit of inclusion of the linker (i.e.
when a symbol is referenced the whole object where this symbol is found is
linked). For the moment built-in predicates are grouped according to theme,
for instance, a program using write/1 will give rise to an executable which
also contains the code of writeq/1, display/1, etc. In the future we will
define only one predicate per file.

In Section 4.4 we have mentioned the role of the initializer function (called

15

Object Initializer in our example). It is worth explaining how this function
is invoked. Indeed, the Prolog engine must be able to dynamically find at run-
time all the objects selected by the linker and execute their initializer function.
The solution retained in GNU Prolog consists in marking all object files with
magic numbers together with the address of the initializer function. At run-
time, a pertinent portion of the data segment is scanned to detect each linked
object (thanks to the magic numbers) and invoke its initializer.

Another solution would consist in storing, for each object, the address of its
initializer function in a specific data section (also called segment), as the linker
will group all the data defined within the same section. At run-time, this
section has to be scanned and each initializer invoked. This approach is used
under Win32 and will also be adopted for architectures supporting user-defined
sections (e.g. those using ELF executable format).

7 Memory management

Here we just recall that the WAM memory management consists in using three
stacks: the Local Stack for control blocks and local variable, the Heap for data
structures, and the Trail for storing bindings to undo upon backtracking (GNU
Prolog also manages a stack for constraint solving).

It is mandatory to control the growth of stacks and to alert the user in case of
overflow. This is usually done by incorporating software tests either at each
memory allocation (potentially several times for each clause for the Heap) or
at each clause entry (checking all stacks) or thanks to new WAM-like instruc-
tions. This control might however be costly, all the more because basically
current machine architectures allow for hardware tests. Indeed machines use
virtual memory, meaning that the user does not have to bother about physical
addresses and real memory size, and provide, logically if not physically, very
large linear memory (e.g. 4 GBytes on 32 bits architectures). When some
data must be accessed, the memory manager detects if the memory page to
which it actually belongs is physically present in memory or not (page fault).
In the latter case, the memory manager loads it in memory after swapping
another page on disk if necessary. Interestingly, the memory manager raises
an exception signal when a page fault refers to an un-allocated (i.e. free) page.
The idea is therefore to have such a signal raised in case of stack overflow. To
ensure this we only have to free (i.e. to give back) each page following a stack
(see figure 2). When an attempt to read/write in this page occurs the signal

16

initially
allocated
pages

(low)

(high)

given back
pages

heap

trail

 local
 stack

Figure 2: memory allocation

triggered is caught by a C function (handler) responsible of diagnosing the
overflow (checking top stack pointers) and of generating the adequate error
message.

The easiest way to implement this scheme under Unix is to use the mmap

function which makes it possible to map a file to part of the memory. All the
pages of this part are initially marked “swapped” on the corresponding page
of the file. Then, reading and writing on this file are done by simply reading
and writing the memory. There is usually a special device (/dev/zero) which
returns zero on initial reading and on which writing is not reflected. This
device is therefore well suited to our stacks since only memory operations are
performed. Thanks to the munmap function, each page following a stack is
given back to the memory manager.

Under windows we use the Win32 function VirtualAlloc to allocate the ini-
tial space and VirtualProtect to give back a page to the memory manager
(thereby ensuring it will not be allocated by another request).

In the future we plan to reserve much more space between two consecutive
stacks in order to handle dynamic stack growths. Indeed, when a stack overflow
is detected one (or more) page(s) is allocated and the execution is resumed.

17

We did not implement this solution initially since, under Unix, this is exactly
what the memory manager does when a page fault occurs (corresponding to
a valid page). Hence, the user can define a very big initial space for each
stack (via environment variables) but only the portion that is actually will be
physically allocated. However, this is not true under Win32 (where we have
to manage the growth explicitly).

Another important issue is the integration of a Garbage Collector. Our prefer-
ence is for a simple (but efficient) collector in order to ensure easy maintenance
and allow for possible extensions.

8 Tagging Scheme

The current version of GNU Prolog uses a tagging scheme which optimizes
Tag / UnTag operations on the REF tag. Indeed, these operations are executed
very often in the WAM (e.g. by the Deref procedure). This is done using 0
as the tag for REF and using low bits of a word to encode the tag. Since all
address in the WAM are word-aligned, the 2 (resp. 3) least significant bits of
the address are 0 on 32-bit (resp. 64-bit) machines. The tagging scheme used
by GNU Prolog depends on the number of tags (data types) and on the target
architecture. The current version uses 7 tags and thus requires three bits to
encode them. The following table details the tagging scheme used on 32 and
64-bit machines.

Tag Type on 32 bits on 64 bits
REF reference 0 address 00 address 000
LST list 0 address 01 address 001
STC structure 0 address 10 address 010
ATM atom 0 hash key 11 hash key 011
FLT float 1 address 00 address 100
FDV FD variable 1 address 01 address 101
INT integer 1 value 11 value 111

Obviously Tag and UnTag are void operations when the tag is REF.

For other tags whose values are addresses (LST, STC, FLT and FDV), the Tag

macro simply adds the tag mask. Here an addition is better than a bitwise
OR 3 since it allows the C compiler to optimize expressions like Tag(LST,

3but obviously semantically equivalent since affected bits in the address are 0-bits.

18

H+1) producing H + 4 + 1 (= H + 5 !) 4. Using a bitwise OR we would obtain
two instructions: one to compute H + 4 and another one for the bitwise OR.
The UnTag macro resets tag bits to 0 with one instruction (a bitwise AND).

For the ATM tag, the value is a hash key, i.e. a positive integer. The Tag macro
generates two instructions: a logical left shift and the addition of the tag mask.
This is possible since a hash key is a small positive integer, and thus we can be
sure that the three most significant bits are zero. The UnTag operation simply
consists in a logical right shift.

The case of the INT tag is a bit more complex. Since an integer may be negative,
we cannot be sure that the three most significant bits are 0. Therefore the Tag
macro requires three instructions, two to shift the value left, resetting high
bits to zero, and one to add the tag mask. This can be optimized if the high
bit of the tag is 1 (which is the case here) and therefore results in only two
instructions: a logical left shift and a bitwise OR with the tag mask. The
UnTag macro requires two instructions to perform a sign-bit propagation: a
logical left shift (to bring back the sign bit) followed by an arithmetic right
shift (which propagates the sign bit).

When developing wamcc, we tried to optimize operations on integers (using 0
for the INT tag). For reasons of simplicity, the first versions of GNU Prolog
were developed in this perspective. The resulting gain obtained by the current
tagging scheme is around 20 % while the slowdown on integer operations is
marginal.

9 Prolog performance evaluation

9.1 Compilation

Table 1 presents the performance of the GNU Prolog compilation scheme on a
classical set of benchmarks, times are in seconds and sizes in KBytes measured
on a PentiumIII 733 Mhz with 192 MBytes of memory running Linux (Man-
drake 7.1). We have also added the GNU Prolog pl2wam sub-compiler since
it is a more representative example. For each program, the table gives: the
number of lines of the Prolog source program 5, the compilation time needed to

4H + 4 corresponds to H+1 on a 32-bit machine, 1 is the tag mask for LST.
5neither blank lines nor comments are counted.

19

lines object executable
Program time size time size

boyer 416 0.25 38 0.35 174
browse 144 0.10 11 0.20 147
cal 168 0.10 11 0.22 145
chat parser 957 0.70 101 0.83 236
ham 101 0.05 9 0.20 144
nrev 109 0.06 5 0.20 139
poly 10 138 0.07 9 0.23 147
queens 112 0.05 5 0.17 138
queensn 89 0.06 4 0.20 139
reducer 373 0.22 29 0.37 165
sendmore 104 0.06 7 0.21 141
tak 78 0.03 3 0.17 137
zebra 94 0.07 6 0.18 140

pl2wam 3263 1.60 251 1.83 518

Table 1: Compilation evaluation (PIII-733 Mhz / Linux)

produce the object, the size of the object code, the total compilation time (in-
cluding the link) and the final executable size. Sizes are those of the stripped
objects/executables, i.e. they do not include the symbol table but they do
include all of the data and code segments.

The size of (stripped) objects shows that this approach really generates small
code (less than 10 KBytes for many benchmarks). The size of the whole exe-
cutable shows the interest of excluding most of the unused built-in predicates.
Indeed, when all built-in predicates (Prolog+FD) are present the size is at
least 600 KBytes (this is the size of the GNU Prolog interactive top-level). Let
us recall that we can even further reduce this size with a little reorganization of
the GNU Prolog libraries (see Section 6). An important feature of GNU Pro-
log is its ability to produce small stand-alone executables which can be used
in many applications (tools, web, CGIs, etc). Other Prolog systems cannot
produce such stand-alone executables since they always require the presence
of the emulator at run-time (500 KBytes to 2 MBytes).

Compilation times are rather good and we have achieved our initial goal since
GNU Prolog compiles 5-10 times faster than wamcc+gcc. Obviously this factor
is not constant and the gain is more effective on large programs (and thus it
is difficult to give an upper bound to the speedup factor). This is due to

20

Program lines gnu wamcc speedup

cal 168 0.22 0.74 3.36
boyer 416 0.35 1.89 5.50
chat parser 957 0.83 5.77 6.91
pl2wam 3263 1.60 14.73 9.20

Table 2: Compilation speed (in secs on PIII-733 / Linux)

the fact that the translation from the WAM to an object is done in linear
time (each translation only needs one pass) while a C compiler may require
a quadratic time (and even worse) for its optimizations. Table 2 illustrates
this comparison of compilation times for both systems on some representative
benchmarks (since wamcc is not able to compile pl2wam due to a restricted
built-in library we only took into account, for both systems, the time needed
to generate the object file).

9.2 Benchmarking Prolog

Program gnu yap wamcc sicstus ciao bin xsb swi
× 10 iter. 1.2.5 4.3.12 2.21 3.8.5 1.6 8.00 2.2 3.4.2

boyer 1.44 1.23 1.87 1.58 1.56 4.01 3.76 7.53
browse 1.85 1.12 2.00 2.04 2.15 5.20 3.50 7.13
cal 0.18 0.31 0.20 0.46 0.45 0.54 0.72 2.12
chat parser 0.31 0.28 0.50 0.41 0.41 0.67 0.55 0.82
ham 1.27 1.00 2.08 1.62 1.66 2.47 2.57 4.07
nrev 0.17 0.08 0.26 0.14 0.25 0.00 0.43 1.04
poly 10 0.10 0.08 0.14 0.12 0.13 0.22 0.24 0.46
queens 1.03 0.79 1.05 1.76 1.99 2.69 3.02 13.44
queensn 4.58 3.46 6.69 5.69 6.80 8.75 9.52 22.84
reducer 0.09 0.07 0.12 0.09 0.10 0.18 0.23 0.28
sendmore 0.10 0.10 0.12 0.19 0.24 0.44 0.32 0.84
tak 0.25 0.25 0.31 0.37 0.40 0.86 0.68 137.65
zebra 0.09 0.07 0.16 0.12 0.15 0.19 0.15 0.21

Speedup ↓ 1.26 1.36 1.38 1.56 2.61 2.49 5.77

Table 3: GNU Prolog versus other systems (in secs on PIII-733 / Linux)

In this section we compare GNU Prolog with two commercially available sys-
tems: SICStus Prolog emulated 6 and BinProlog (evaluation version) and five

6with default installation options of the binary version provided by SICS.

21

academic systems: Yap Prolog, wamcc, CIAO, XSB-Prolog and SWI-Prolog.
Table 3 presents execution times for these systems and the average speedup
(or slowdown when preceded by a ↓ sign) of GNU Prolog. For each bench-
mark, the execution time is the total time needed for 10 iterations. Times
are measured on a PentiumIII 733 Mhz with 192 MBytes of memory running
Linux.

To summarize, GNU Prolog is slightly slower than Yap Prolog, which is the
fastest emulated Prolog system. On the other hand, GNU Prolog is 1.4 times
faster than SICStus emulated and wamcc, 1.6 times faster than CIAO, around
2.5 times faster than BinProlog and XSB-Prolog and more than 5 times faster
than SWI-Prolog (without taking into account the tak benchmark). To be
fair we should point out that we did not have enough time to carry out an
exhaustive comparison with all the Prolog systems and their variants. For
instance, SICStus Prolog can compile to native code for some architectures
(e.g. under SunOS/sparc but not yet under Linux/ix86) and then it should
be twice as fast as GNU Prolog on those platforms. Let us also note that
BinProlog can also partly compile to C.

It is worth noticing that the above benchmarks, classical in the Logic Pro-
gramming community, are small programs that are not really representative of
real-life applications, and no longer well suited to assessing the performance
of efficient Prolog systems running on fast hardware. Most of the times in the
above table are under a second although they represent ten executions of each
benchmark. Since there is no general agreement on a more up-to-date set of
benchmarks, we took the most obvious one: pl2wam (the GNU Prolog to WAM
compiler compiling itself) which is more than 3,000 lines long. Table 4 shows
the execution times for the Prolog systems in which we were able to execute
this benchmark with minor adaptations.

gnu yap sicstus ciao swi
1.2.5 4.3.12 3.8.5 1.6 3.4.2

pl2wam 0.77 1.25 3.02 3.44 2.38
Speedup 1.62 3.92 4.47 3.09

Table 4: The pl2wam benchmark (in secs on PIII-733 / Linux)

This benchmark spends around 35 % of the total time performing Prolog term
input/output. Therefore SICStus and CIAO, which are based on the classical
Warren/O’Keefe’s IO term library (written in Prolog), show poor performance:
around 4 times slower than GNU Prolog. SWI-Prolog uses a C implementation
of read/write predicates and is only 3 times slower than GNU Prolog. Finally
Yap Prolog, which is nevertheless also based on a C library, is surprisingly 1.6

22

times slower than GNU Prolog. Even if a single benchmark could obviously not
be representative of all applications, it should be recalled that compilation is
the primary task of any Prolog system and its performance is thus interesting
to observe.

Taken as a whole, this performance evaluation shows that a Prolog system
based on a simple WAM engine can nevertheless have a good level of efficiency
with this MA-based native compilation scheme. Obviously further improve-
ments could be achieved by integrating all well-known WAM optimizations.
Another interesting issue consists in inlining C calls to the run-time library.
A straightforward first step is to replace some call c MA instructions by the
assembly code of the function involved. Preliminary results show a 20-30 %
speedup, but better performance could be achieved, for instance by taking
argument loading into account.

10 Constraint solving

Constraint Programming is a widely successful extension of Logic Program-
ming, which has had a significant impact on a variety of industrial applications,
see [9]. It is thus natural to include a constraint solving extension to any mod-
ern Prolog-based system.

GNU Prolog compiles finite domain constraints in the same way as its predeces-
sor clp(FD), described in [5, 6]. It is based on the so-called “RISC approach”
which consists in translating at compile-time all complex user-constraints (e.g.
disequations, linear equations or inequations) into simple, primitive constraints
(the FD constraint system) at a lower level which really embeds the propa-
gation mechanism for constraint solving. Let us first present the basic ideas
of the FD constraint system and then detail the extensions to this framework
implemented in GNU Prolog.

10.1 The FD constraint system

The FD constraint system is a general purpose constraint framework for solving
discrete constraint satisfaction problems (CSPs). It was originally proposed by
Pascal Van Hentenryck in a concurrent constraint setting [12], and an efficient
implementation in the clp(FD) system is described in [5, 6]. FD is based on a

23

single primitive constraint through which complex constraints are defined, so
for example constraints such as X = Y or X ≤ 2Y are defined by means of FD
constraints, instead of being built into the theory. Each constraint is thought
of as a set of propagation rules describing how the domain of each variable is
related to the domain of other variables, i.e. rules for describing node and arc
consistency propagation (see for instance [10] for more details on CSPs and
consistency algorithms).

A constraint is a formula of the form X in r where X is a variable and r
is a range. A range in FD is a (non empty) finite set of natural numbers.
Intuitively, a constraint X in r enforces that X belongs to the range denoted
by r. Such a range can be not only a constant range (e.g. 1..10) but also an
indexical range when it contains one or more of the following:

• dom(Y) which represents the whole current domain of Y ;

• min(Y) which represents the minimal value of the current domain of Y ;

• max(Y) which represents the maximal value of the current domain of Y .

Obviously when Y is instantiated, all three indexicals evaluate to this value.
When an X in r constraint uses an indexical term depending on another vari-
able Y it becomes store-sensitive and must be checked each time the domain
of Y is updated. This is how consistency checking and domain reduction is
achieved.

Complex constraints such as linear equations or inequations, as well as sym-
bolic constraints can be defined in terms of the FD constraint system, see [6].
For instance, the constraint X ≤ Y , is translated as follows:

X≤Y ≡ X in 0..max(Y) ∧ Y in min(X)..∞

Notice that this translation also has an operational flavor, and specifies, for a
given n-ary constraint, how a variable domain has to be updated in terms of the
other variable. For example, in the FD constraint X in 0..max(Y), whenever
the largest value of the domain of Y changes (i.e. decreases), the domain of X
is reduced. If, on the other hand, the domain of Y changes but its largest value
remains the same, then the domain of X does not change. One can therefore
consider those primitive X in r constraints as a low-level language in which
the propagation scheme has to be expressed. Indeed, it is possible to express
in the constraint definition (i.e. the translation of a high-level user constraint

24

into a set of primitive constraints) the propagation scheme chosen to solve the
constraint, such as forward-checking, or full or partial look-ahead, depending
on the use of dom or min/max indexical terms.

10.2 Finite Domain constraints in GNU Prolog

In GNU Prolog we have designed a specific language to define FD constraints
in a flexible and powerful way. The basic X in r primitive does not offer
a way of defining reified constraints (except via a C user function) and does
not allow the user to control the propagation triggers. The need for symbolic
constraints like element/3 also highlighted the need to handle lists of variables
at the primitive level. The GNU Prolog constraint definition language has
then been designed to allow the user to define complex constraints and not
only basic arithmetic constraints. This language is compiled to C by the fd2c

sub-compiler. The C source file obtained is submitted to the C compiler to
obtain an object which is then included by the linker as shown in Figure 1.
We present the main features of this language by means of some examples of
constraint definitions.

Let us define a constraint X + C = Y (X and Y are FD variables, C is an
integer):

x_plus_c_eq_y(fdv X,int C,fdv Y)

{

start X in min(Y) - C .. max(Y) - C /* X = Y - C */

start Y in min(X) + C .. max(X) + C /* Y = X + C */

}

A constraint is defined in a C-like syntax. The head declares the name of the
constraint (x plus c eq y) and for each argument its type (fdv, int) and its
name. The keyword start activates an X in r primitive. The first states that
the bounds of X must be between min(Y) − C and max(Y) − C. Similarly,
the second indicates how to update Y from X.

Here is a more complex example to define min(X, A) = Z (where A and Z are
FD variables and A an integer):

min_x_a_eq_z(fdv X,int A,fdv Z)

{

start (c1) Z in Min(min(X),A)..max_integer /* Z >= min(X,A) */

25

start (c2) Z in 0 .. max(X) /* Z <= X */

start (c3) X in min(Z) .. max_integer

start Z in 0 .. A /* Z <= A */

wait_switch

case A>max(Z) /* case : A != Z */

stop c1

stop c2

stop c3

start Z in min(X) .. max(X) /* Z = X */

start X in min(Z) .. max(Z)

}

The first X in r constraint uses a C macro Min to compute the minimum
between min(X) and A. The keyword max integer represents the greatest
integer that an FD variable can take. Note the use of the wait switch in-
struction to enforce X = Z (and to stop the constraints c1, c2, c3) as soon as
the case A 6= Z is detected.

This facility offered by the language to delay the activation of an X in r
constraint makes it possible to define reified constraints. The basic idea of
reified constraints is to consider the truth values of constraints as first-class
objects which are given the form (“reified”) of boolean values. This allows
the user to make assumptions about the issues of constraints in a given store
in order to define other constraints. The following example illustrates how to
define X = C ⇔ B where X is an FD variable, C an integer and B a boolean
variable (i.e. an FD variable whose domain is 0..1) which captures the truth
value of the constraint X = C. The definition below waits until either the
truth of X = C or the value of B is known:

truth_x_eq_c(fdv X,int C,fdv B)

{

wait_switch

case max(B)==0 /* case : B = 0 */

start X in ~{ C } /* X != C */

case min(B)==1 /* case : B = 1 */

start X in { C } /* X = C */

case min(X)>C || max(X)<C /* case : X != C */

start B in { 0 } /* B = 0 */

26

case min(X)==C && max(X)==C /* case : X = C */

start B in { 1 } /* B = 1 */

}

Each constraint gives rise to a C function returning a boolean depending on
the outcome of the addition of the constraint to the store. The link between
Prolog and a constraint is done by a specific Prolog predicate fd tell/1 which
is in fact compiled to a call c to the corresponding C function followed by a
fail ret. For instance, to define the previous constraint one would declare a
predicate ’x=c <=> b’/3 in the following way:

’x=c <=> b’(X,C,B) :-

fd_tell(truth_x_eq_c(X,C,B)).

Obviously, GNU Prolog offers a wide variety of high-level constraints in the
built-in library. However, low-level definitions of constraints as illustrated
above are open to the expert programmer who needs to customize or enrich
the constraint solver for some practical application.

10.3 Benchmarking FD constraints

The performance of the FD constraint solver of GNU Prolog is the same as
clp(FD) [6], in other words, equivalent to the Ilog Solver commercial C++ sys-
tem from ILOG and on average twice as fast as CHIP, a commercial constraint
logic programming system from Cosytec, on a similar subset of constraints.

In this section we compare the FD constraint solver with that of SICStus
Prolog. As the syntax and the set of predefined constraints are not the same
in both systems we use some examples provided with SICStus. Since we are
interested here in comparing the raw performance of the implementation of the
solvers (and not their expressive power) we selected benchmarks with a similar
formulation in both systems for which we could expect both solvers to perform
the same computations. Table 5 presents execution times for both solvers and
the speedup for GNU Prolog. Times are measured on a PentiumII 400 Mhz
with 128 MBytes of memory running Linux (RedHat 5.1). On average GNU
Prolog is around 4 times faster than SICStus Prolog.

27

gnu sicstus speedup
Program 1.2.5 3.7.1

crypta 0.008 0.012 1.50
eq10 0.006 0.020 3.33
eq20 0.010 0.030 3.00
donald 0.210 0.820 3.90
alpha 0.450 2.880 6.40
alpha ff 0.010 0.030 3.00
queens 16 0.050 0.270 5.40
cars all 0.015 0.060 4.00

Table 5: GNU Prolog FD solver versus SICStus FD solver

11 Conclusion

GNU Prolog is a free Prolog compiler with constraint solving over finite do-
mains. The Prolog part of GNU Prolog conforms to the ISO standard for Pro-
log and also provides many extensions which are very useful in practice (global
variables, OS interface, sockets, etc), while the finite domain constraint part
contains all classical arithmetic and symbolic constraints, and also integrates
an efficient treatment of reified constraints and boolean constraints. The com-
pilation scheme of GNU Prolog uses a restricted mini-assembly language which
drastically speeds up compilation times and thus combines the advantages of
fast compilation (like emulator-based systems) and native compilation. In-
deed, GNU Prolog produces native binaries which are stand-alone. The size of
these executable files can be quite small since GNU Prolog can avoid linking
the code of most unused built-in predicates. It could thus be worth investi-
gating the use of the MA language as a back-end for other logic or functional
languages. The performance of GNU Prolog is close to that of commercial
systems, both for the Prolog part and the Constraints part and several times
faster than other popular free systems. Current work is focused on improving
these performances. A promising direction consists in inlining the assembly
code of some GNU Prolog runtime library functions (associated to WAM in-
structions) instead of emitting C function calls. Preliminary experiments have
given encouraging results.

28

References

[1] H. Aı̈t-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction.
Logic Programming Series, MIT Press, 1991.

[2] M. Carlsson. Design and Implementation of an Or-Parallel Prolog Engine.
PhD dissertation, SICS, Sweden, 1990.

[3] J. Chailloux. La machine LLM3. Technical Report RT-055, INRIA, 1985.

[4] P. Codognet and D. Diaz. wamcc: Compiling Prolog to C.
In 12th International Conference on Logic Programming, Tokyo, Japan,
MIT Press, 1995.

[5] P. Codognet and D. Diaz. A Minimal Extension of the WAM for clp(FD).
In Proc. ICLP’93, 10th International Conference on Logic Programming.
Budapest, Hungary, MIT Press, 1993.

[6] P. Codognet and D. Diaz. Compiling Constraint in clp(FD).
Journal of Logic Programming, Vol. 27, No. 3, June 1996.

[7] Information technology - Programming languages - Prolog - Part 1: Gen-
eral Core. ISO/IEC 13211-1, 1995.

[8] J. Jaffar and J-L. Lassez. Constraint Logic Programming.
In Principles Of Programming Languages, Munich, Germany, January
1987.

[9] V. Saraswat, P. Van Hentenryck, P. Codognet et al. Constraint Program-
ming. ACM Computing Surveys, vol. 28, no. 4, Dec. 1996.

[10] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[11] P. Van Hentenryck. Constraint Satisfaction in Logic Programming.
Logic Programming Series, The MIT Press, 1989.

[12] P. Van Hentenryck, V. Saraswat and Y. Deville. Constraint processing
in cc(FD). In Constraint Programming: Basics and Trends, A. Podelski
(Ed.), LNCS 910, Springer Verlag 1995. First version: Research Report,
Brown University, Jan. 1992.

[13] P. Van Roy and A. Despain. High-Performance Logic Programming with
the Aquarius Prolog Compiler. IEEE Computer, pp 54-67, 1992.

[14] D. H. D. Warren. An Abstract Prolog Instruction Set.
Technical Report 309, SRI International, Oct. 1983.

29

	Introduction
	General compilation scheme
	Background
	Overview

	From Prolog to the WAM
	The mini-assembly language
	Overview
	The MA instruction set
	Associating an identifier to a predicate name
	An example

	Mapping the mini-assembly to a target machine
	Linking
	Memory management
	Tagging Scheme
	Prolog performance evaluation
	Compilation
	Benchmarking Prolog

	Constraint solving
	The FD constraint system
	Finite Domain constraints in GNU Prolog
	Benchmarking FD constraints

	Conclusion

