
Using clp(FD) to Support Air Traffic Flow
Management

Denise Chemla1,3, Daniel Diaz2, Philippe Kerlirzin1, Serge Manchon1

1 CENA, Orly Sud 205, 94542 Orly Aérogare Cedex, France
2 INRIA, Domaine de Voluceau, 78153 Le Chesnay, France

3 SYSECA, 315, bureaux de la Colline, 92213 Saint-Cloud, France

Abstract. In this paper, a Constraint Logic Programming (CLP) ap-
proach is used to solve an Air Traffic Flow Management (ATFM) prob-
lem, the aircraft departure slot allocation. Moreover, our purpose is to
show that CLP, combining the declarativity of logic programming with
the efficiency of constraint solving, is well suited to model many combina-
torial optimization problems involved in the ATFM domain. clp(FD), a
Constraint Logic Programming language with Finite Domain constraints
has been chosen to implement our practical application.

1 Introduction

The density of traffic over Europe has been steadily increasing for several years.
This growth is difficult to manage and causes delays for passengers and work
overloads for controllers. ATFM aims at adapting a variable demand (the air-
planes which want to fly) to the variable available capacity of the system of
control so as to use this capacity at best. It has significant safety and economic
consequences as well.

Our research is pursued in the French Air Navigation Research Center
(CENA), that is involved in the development of the future Air Traffic Control
system. This work will be integrated into the SPORT decision support system
for traffic flow management. This system helps flow managers in analyzing traffic
data and in preparing flow management measures. It is operational in the six
French Air Control Centers and at the Eurocontrol Central Flow Management
Unit located in Brussels. Figure 1 is a view of the SPORT system showing the
French sectors and the most congested routes.

In this paper, a CLP approach is used to solve the ATFM problem of depar-
ture slot allocation. clp(FD), a CLP language with Finite Domain constraints
has been chosen to implement this practical application. The departure slot al-
location is done manually until now, so we couldn’t compare our approach with
linear methods that could have been yet used. Such a comparison (linear versus
CLP methods to solve ATFM problems will be done in our next research).

The structure of this paper is as follows: Sect. 2 gives a brief description
of ATFM; the third one presents the clp(FD) language features and a new

constraint developed for our needs; Sect. 4 shows how clp(FD) can be used
to solve the departure slot allocation problem under capacity and/or flow rate
constraints.

Fig. 1. Display of SPORT system

2 Problem Context

2.1 Air Traffic Flow Management Overview

ATFM aims at adapting a variable demand to the variable capacity of the system
of control. Its first objective is to assure, by smoothing the flow of aircraft, that
unacceptable levels of traffic congestion do not develop. Its second goal is to
perform this task without imposing unnecessary flow restrictions.

France is overflown by all European air-carriers and even more. Its airspace
is a patchwork of about 90 sectors. Each of them is under the responsibility of
a pair of controllers. A flight crosses several sectors along its route. The radar
controller works on a radar position and gives instructions to pilots via a radio
link. He (she) maintains separation between planes and keep them away from
specific dangers such as military areas, storms. The planning controller takes it

on to find convenient entry and exit flight levels and the right coordination with
neighbouring sectors. When traffic allows it, sectors can be grouped (there are
about 120 possible groups of sectors).

The European ATFM activity is structured in three levels:

1. strategic level: at this level, long term measures are defined such as the
traffic orientation scheme that dictates the routes operators have to use to
go from specific departure areas to specific arrival areas. National measures
are also defined at this level: modulation of controllers working hours, agree-
ments between military and civil air traffic services, or use of main platforms
scheduling;

2. pre-tactical level: an important feature of the sector is its capacity, i.e. the
maximum number of flights that can enter the sector per hour. This capacity
is variable along the day and along the year. Generally, it is greater than the
demand when one team of controllers manages one sector. However, some
sectors are regularly overloaded due to a limited number of controllers, to
structural reasons, or to peak traffic: in that case, the demand can be greater
than the capacity during certain periods of the day. The pre-tactical ATFM
consists in preparing, two days before the tactical day, a regulation plan
which is a set of flow rate restrictions intended to avoid overloads within
critical sectors.

3. tactical level: is sub-divided into two processes:
– slot allocation: airline operators affected by the regulation plan have

to ask for departure slots two hours before scheduled take-off, so that
each aircraft enters critical sectors at the right time. In the French flow
management unit, slots are allocated according to a first-demander-first-
served principle.

– real time supervision: during the pre-tactical phase, relying on traffic
periodicity, flow managers forecast the traffic to come using recorded
data. Because of last time changes (weather conditions, technical failures,
...), it is necessary to monitor the effects of the regulation plan and to
adapt some restrictions in real time to cope with excess demand and
under-used capacities.

2.2 The Slot Allocation Problem

First of all, we will focus on solving the slot allocation problem under capacity
constraints; a small example is presented in Sect. 4. We will then extend the
model in order to integrate another type of constraints, called “flow rate con-
straints”, to organize the delays undergone by the flights in the first application.

Capacity Constraint Definition. A capacity constraint is a relation between
an airspace volume A (a sector or a group of sectors), a temporal period T and
an hourly rate N/δt (N is the maximum number of aircraft that can enter the

sector each δt minutes). The constraint is satisfied if during T , at most N flights
per contiguous slices of δt minutes width enter A1. N is called capacity of A.
The problem consists in avoiding overloads all along the tactical day by delaying
certain flights. In our model, we have made the choice that capacity constraints
affect all flights without any discrimination: no flight is privileged with regard
to CLP slot allocation.

Description Of The Slot Allocation Problem Model. The slot allocation
problem under capacity constraint can be defined by its input and output data.
The input data are:

– the demand: constituted of a set of filled flight plans:
{Fi : (Oi, Di, SRi : (Si,1, EETi,1, . . . , Si,n, EETi,n))},
where Fi is a flight identifier, Oi and Di are its origin and destination,
Si,1, . . . , Si,n are the sectors crossed by the flight, EETi,1, . . . , EETi,n are
the expected (by the flight carrier) entry times in those sectors (EETi,1 is
the expected departure time of the flight). There are 6000 flight plans a day
on average.

– the resources: defined by a set of airspace volume capacity constraints:
{CCj : ({Sj,1, . . . , Sj,m}, Capaj ,H1j ,H2j)}
where CCj is a constraint identifier, Sj,1, . . . , Sj,m are the constrained
airspace volumes by the capacity constraint, Capaj is the capacity (half-
hourly maximum number of flights entering in the constrained airspace vol-
ume), H1j and H2j are the bounds of the application period of the con-
straint. An example of such a capacity constraint is

CC1 : (′UT ′,′ TU ′, 26, 600, 660)

that expresses that at most 26 aircraft can enter the group of sectors
{′UT ′,′ TU ′} from 10am to 11am (in minutes from 0am).

The output data is a set of satisfactory departure times {SETk,1} of the
flights Fk such that all capacity constraints are satisfied and the average delay
undergone by a flight is minimized.

3 clp(FD) in a Nutshell

As introduced in Logic Programming by the CHIP language, clp(FD) [6] is
a constraint logic language based on finite domains, where constraint solving
is done by propagation and consistency techniques originating from Constraint
Satisfaction Problems [15,17,10]. The novelty of clp(FD) is the use of a unique
primitive constraint which allows users to define their own high-level constraints.
The black-box approach gives way to glass-box approach.
1 We have developed a new constraint, the atmost_interval constraint that enables

the implementation of a certain number of aircraft per contiguous slices of δt-minute
width; the cumulative constraint (of CHIP) allows reasoning on sliding windows of
δt-minute width and is so too stringent for our needs.

3.1 The Constraint X in r

The main idea is to use a single primitive constraint X in r, where X is a finite
domain (FD) variable and r denotes a range, which can be not only a constant
range, e.g. 1..10 but also an indexical range using:

– min(Y) which represents the minimal value of Y (in the current store),
– max(Y) which represents the maximal value of Y ,
– val(Y) which represents the value of Y as soon as Y is ground.

A fragment of the syntax of this (simple) constraint system is given in table 1.

c ::= X in r (constraint)

r ::= t..t (interval range)

{t} (singleton range)

...

t ::= C (parameter)

n (integer)

min(X) (indexical min)

max(X) (indexical max)

val(X) (delayed value)

t + t (addition)

t - t (subtraction)

t * t (multiplication)

...

Table 1. fragment of the constraint system syntax

The intuitive meaning of such a constraint is: “X must belong to r in any
store”.

The initial domain of an FD variable is 0..∞ and is gradually reduced by
X in r constraints which replace the current domain of X (DX) by D′

X =
DX ∩ r at each modification of r. An inconsistency is detected when D′

X is
empty. Obviously, such a detection is correct if the range denoted by r can only
decrease. So, there are some monotone restrictions about the constraints [11]. To
deal with the special case of anti-monotone constraints we use the general forward
checking propagation mechanism [8] which consists in awaking a constraint only
when its arguments are ground (i.e. with singleton domains). In clp(FD) this
is achieved using a new indexical term val(X) which delays the activation of a
constraint in which it occurs until X is ground.

As shown in the previous table, it is possible to define a constraint w.r.t.
the min or the max of some other variables, i.e. reasoning about the bounds
of the intervals (partial lookahead [9]). clp(FD) also allows operations about

the whole domain in order to also propagate the “holes” (full lookahead [9]).
Obviously, these possibilities are useless when we deal with boolean variables
since the domains are restricted to 0..1.

3.2 High-Level Constraints and Propagation Mechanism

From X in r constraints, it is possible to define high-level constraints (called
user constraints) as Prolog predicates. Each constraint specifies how the con-
strained variable must be updated when the domains of other variables change.
In the following examples X, Y are FD variables and C is a parameter (runtime
constant value).

’x+y=c’(X,Y,C):- X in C-max(Y)..C-min(Y), (C1)
Y in C-max(X)..C-min(X). (C2)

’x-y=c’(X,Y,C):- X in min(Y)+C..max(Y)+C, (C3)
Y in min(X)-C..max(X)-C. (C4)

The constraint x+y=c is a classical FD constraint reasoning about intervals.
The domain of X is defined w.r.t. the bounds of the domain of Y .

In order to show how the propagation mechanism works, let us trace the
resolution of the system {X+Y = 4, X−Y = 2} (translated via ’x+y=c’(X,Y,4)
and ’x-y=c’(X,Y,2)): after executing ’x+y=c’(X,Y,4), the domain of X and
Y are reduced to 0..4 (C1 is in the current store: X in −∞..4, C2 : Y in −∞..4).
And, after executing ’x-y=c’(X,Y,2), the domain of X is reduced to 2..4 (C3 :
X in 2..6), which then reduces the domain of Y to 0..2 (C4 : Y in 0..2).

Note that the unique solution {X = 3, Y = 1} has not yet been found. So, in
order to efficiently achieve consistency, the traditional method (arc-consistency)
only checks that, for any constraint C involving X and Y , for each value in the
domain of X there exists a value in the domain of Y satisfying C and vice-
versa. So, once arc-consistency has been achieved and the domains have been
reduced, an enumeration (called labeling) has to be done on the domains of the
variables to yield the exact solutions. Namely, X is assigned to one value in DX ,
its consequences are propagated to other variables, and so on. If an inconsistency
arises, other values for X are tried by backtracking. Note that the order used to
enumerate the variables and to generate the values for a variable can improve
the efficiency in a very significant manner (see heuristics in [9]).

In our example, when the value 2 is tried for X, C2 and C4 are woken (because
they depend on X). C2 sets Y to 2 and C4 detects the inconsistency when it
tries to set Y to 0. The backtracking reconsiders X and tries value 3 and, as
previously, C2 and C4 are reexecuted to set (and check) Y to 1. The solution
{X = 3, Y = 1} is then obtained.

3.3 Optimizations

The uniform treatment of a single primitive for all complex user constraints leads
to a better understanding of the overall constraint solving process and allows

for (a few) global optimizations, as opposed to the many local and particular
optimizations hidden inside the black-box. When a constraint X in r has been
reexecuted, if D′

X = DX it was useless to reexecute it (i.e. it has neither failed nor
reduced the domain of X). Hence, we have designed three simple but powerful
optimizations for the X in r constraint [6,2] which encompass many previous
particular optimizations for FD constraints:

– some constraints are equivalent so only the execution of one of them is
needed. In the previous example, when C2 is called in the store
{X in 0..4, Y in 0..∞} Y is set to 0..4. Since the domain of Y has been
updated, all constraints depending on Y are reexecuted and C1 (X in 0..4)
is woken unnecessarily (C1 and C2 are equivalent).

– it is useless to reexecute a constraint as soon as it is entailed. In clp(FD), only
one approximation is used to detect the entailment of a constraint X in r
which is “X is ground ”. So, it is useless to reexecute a constraint X in r as
soon as X is ground.

– when a constraint is woken more than once from several distinct variables,
only one reexecution is necessary. This optimization is obvious since the
order of constraints, during the execution, is irrelevant for correctness.

These optimizations make it possible to avoid on average 50% of the total
number of constraint executions on a traditional set of FD benchmarks (see [6,2]
for full details) and up to 57% on the set of boolean benchmarks presented below.

3.4 Performances

Full implementation results about the performances of clp(FD) can be found in
[6,2], and show that this “glass-box” approach is sound and can be competitive in
terms of efficiency with the more traditional “black-box” approach of languages
such as CHIP. On a traditional set of benchmark programs, mostly taken from
[9], the clp(FD) engine is on average about four times faster than the CHIP
system, with peak speedup reaching eight.

3.5 atmost_interval Constraint

To model capacity constraints, we needed to define a new constraint, the
atmost_interval constraint.

The symbolic constraint atmost_interval(N, [X1, ..., Xm], L, U) is a user-
defined constraint that holds if and only if at most N variables Xi are included
within the interval [L,U]. This constraint can be defined via the relation:

Cardinal{Xi/L ≤ Xi ≤ U} ≤ N

A boolean Bi is associated with each variable Xi and set to 1 if L ≤ Xi ≤ U
and to 0 otherwise. The sum of all Bi must be less than or equal to N . It is worth
noticing that such a constraint should be “wired” in CHIP by the designers of
the system whereas it is defined in clp(FD) as a user constraint.

4 Slot Allocation Satisfying Capacity Constraints

4.1 A Small Example

In the graphical representation (Fig. 2), 4 flights are represented as connected
segments. Each segment corresponds to the crossing of a sector by a flight and is
characterized by its length proportional to the crossing duration. The capacity
constraints are represented on time axis: only 2 aircraft are allowed to enter S1
between times 2 and 3, and only 3 aircraft are allowed to enter S2 between times
3 and 5. Variables Vi represent the expected departure times of flights; variables
V ′

j are S1 and S2 the expected entry times (S1 and S2 are the only constrained
sectors so only those variables are necessary).

1

4

S S S1 2 3

11

V

V
V’

t

V

3V

2

1S 2S 6S 7S

2 3 4 5 6 7 8 10

[3s2]
[2s1]

V’32

V’21

V’12

V’41 V’42

S2 S5

S1 S4

Fig. 2. Graphical representation of a small problem

4.2 clp(FD) Model

The slot allocation problem under capacity constraints can be modelled using 3
types of constraints:

1. Domain constraints on departure time variables: we saw that a CLP variable
corresponding to the departure time is associated with each flight; in order
to satisfy capacity constraints, the departure of a flight can be delayed, up
to 3 hours (= 180 min, during our experiments).
Each departure time variable will have to satisfy the following constraint:

Vi in EETi,1..EETi,1 + max delay

where Vi is the departure time variable of flight Fi and EETi,1 is the constant
corresponding to the requested time of the flight (see 2.2 and 4.2).

2. relations between sector entry time variables and departure time variables:
for each capacity constraint, a variable is created for a flight if the entering
time in the first sector Si of its route SRj that belongs to A (where A is the
constraint group of sectors - possibly a singleton) is within T (the constraint
period) - see 4.1 and 4.2. Therefore, we set a new constraint on each of these
variables V ′, as follows:

V ′# = V + ∆

where V is the departure time and ∆ is the time the flight needs to reach
the sector Si (translation constant).

3. atmost_interval constraints: finally, each capacity constraint is obviously
modelled using an atmost_interval constraint, defined in 3.5. Its arguments
are the capacity, the list of the variables identified in step 2, and the bounds
of the constraint period interval (see 3.5 and 4.1).

This model is interesting because of its simplicity and transparency: since
a flight can cross many sectors, it can be affected by several atmost_interval
constraints. Regulators speak about “combining” restrictions but it is difficult
for them to evaluate the effects of such restrictions. Such an overlapping problem
is modelled in a transparent way. Another interest of our model is its extensi-
bility: for instance, it would be obvious to affect a distinct delay to flights if we
considered that some special flights could not be delayed.

4.3 clp(FD) Implementation of our Small Example

The clp(FD) implementation of the small problem presented in 4.3 is provided in
table 2. The solution found by clp(FD) to this problem is S1 = {V 1 = 2, V 2 =
3, V 3 = 6, V 4 = 4}. Flights 1, 2 and 3 can take-off at their requested time, while
flight 4 undergoes a 2 unit-of-time delay.

4.4 Optimization Trials - Heuristics

To solve real cases, we needed to implement some heuristics that we describe in
the three points here below :

1. labeling strategy: clp(FD) labeling works on a list of variables L and back-
tracks first on the last element of L, then on the last but one and so on. This
has a shortcoming: a solution of average delay d1 can be labeled before a
solution of average delay d2 with d2 ≤ d1. In our small example, the solution
S2 = {V 1 = 2, V 2 = 4, V 3 = 6, V 4 = 2} is not found whereas it is better
in term of average delay than S1. For that reason, we have implemented a
new labeling strategy that enumerates solutions in the order of increasing
average delays. The solution S2 is encountered by such a labeling before
S1. But we could not use this labeling in practical examples because it is
too slow to find a solution. To solve practical problems, we have used an
heuristic that leads clp(FD) labeling to find a good solution first. It consists

Solution([V1, V2, V3, V4]) :-

V1 in 2..12,

V2 in 3..13,

V3 in 6..16,

V4 in 2..12,

V’11 #= V1+1,

V’21 #= V2,

V’41 #= V4,

V’12 #= V1+2,

V’22 #= V2+2,

V’32 #= V3,

V’42 #= V4+3,

atmost interval(2, [V’11, V’21, V’41], 2, 3),

atmost interval(3, [V’12, V’22, V’32, V’42], 3, 5),

labeling([V1, V2, V3, V4]).

Table 2. implementation of our small problem with clp(FD) constraints

first in ordering take-off variables in L: the lower bound of the domain of
an element i of L is always less than or equal to the lower bound of the
domain of its successor in L. The second part of the heuristic consists in
setting constraints according to an increasing order among the beginning of
their application period. Thanks to this heuristic, clp(FD) finds a solution
that minimizes the average delay;

2. time granularity: the variable domains have bounds from 0 to 1440 (number
of minutes of a day); if we allow flights to be delayed up to 3 hours, do-
mains can contain 180 values. Those size considerations can be redhibitory
in practical examples (see the size of such examples in next section). So, to
reduce memory size model, we have chosen to divide all variables and domain
bounds by a “time granularity” that can be 5 or 10 minutes (or else);

3. discrete approach: because of the number of variables and constraints in-
volved, it is difficult to treat a day taken as a whole. So, we have cut it in
slices of 4 hours: when a flight is delayed by the constraints of a slice, its
maximum delay is reduced accordingly.

4.5 Results

Figures 3 and 4 show traffic histograms of UM sector before and after the
clp(FD) process: Fig. 3 depicts an overload between 10a.m. and 11a.m. while
Fig. 4 has absorbed it.

Table 3 provides some runtime characteristics: the total number of variables
is equal to the sum of the number of “indomain” constraints and of the number
of “equality” constraints.

clp(FD) was processed on a pattern containing about 100 days of a year.
This proves a certain stability with regard to the density of the trafic. When no

Fig. 3. UM traffic before CLP process

Fig. 4. UM traffic after CLP process

period
length (h)

runtime average
delay
(among
delayed
flights)

average
delay
(among
all
flights)

max
delay

delayed
flights
(p.c.)

number
of
indom.
constr.

number
of
atmost
constr.

number
of
equality
constr.

number
of
flights

3 0′39′′ 19.16′ 5.38′ 50′ 28.10 957 193 13031 4714
4 2′03′′ 18.83′ 4.45′ 55′ 23.64 1184 256 21700 4714
5 4′08′′ 17.50′ 1.90′ 50′ 10.88 1397 320 29006 4714
5 0′44′′ 25.78′ 10.20′ 75′ 39.58 815 218 12069 4714
6 1′42′′ 5.73′ 2.51′ 16′ 43.80 1071 282 19269 4714
3 error 814 199 9967 4714
10 error 1761 393 40187 4714

Table 3. Some runtime examples

solution is found, we decrease the period length and/or increase the maximum
delay that can be undergone by a flight.

To conclude this subsection, we can underline the fact that dealing only with
capacity constraints to make slot allocation has some weaknesses: delays are dis-
tributed among all flights without any discrimination. So, if a regulation plan
were created in such a way, it would have been impossible to adapt the restric-
tions to last minute changes during the real time supervision phase. Hereafter,
we describe an extension of the model seen so far which permits to organize
delays in a fairly manner. It corresponds to the way French flow managers work.

4.6 Extension of the Model to Integrate Flow Rate Constraints

Flow Constraint Definition. A flow constraint (called in Europe a “regula-
tion”) is a relation between a traffic flow F , a temporal period T and a rate N/δt
(N is the maximum number of aircraft that can feed the flow each δt minutes).
F can be defined by a set of origins and/or a set of destinations and/or a set of
beacons and/or a set of sectors and/or a flight level layer. Those properties of a
flow are the characteristics that a flight must fulfill to be submitted to the flow
constraint.

Generic example of flow constraint:
from SetOfOrigins entering GroupOfSectors
h1 - h2 : N/δt

Instantiated example of flow constraint:
from UK to Balearic
10am - 11am : 1/8

The constraint is satisfied if during T , there are at most N flights belonging
to F per slice of δt-minute width.

clp(FD) Model. We can detail the 3 types of constraints shown in 4.4 that are
necessary to model the extension to flow rate constraints:

1. domain constraints on departure time variables: this step is identical to the
first step defined in 4.4;

2. relations between sector entry time variables and departure time variables:
capacity constraints are modelled in the same way than in 4.4; for each
flow constraint, a variable V ′ that corresponds to the adequate instant is
created for a flight if the flight belongs to the constrained flow and “reaches”
the constraint (at instant V ′) within T . “Reaches” means that we will be
interested in different instants of the flight according to the constraint type.
This instant can be a sector entry time, a beacon over-flying time, a departure
or arrival time. Except this, step 2 is identical to the second step above-
mentioned in 4.4;

3. atmost_interval constraints: this step is identical to the third step above-
mentioned in 4.4;

As we can see, the integration of flow rate constraints is very natural. This
illustrates the declarativity and extensibility of our model.

4.7 A Simulation Aid Tool for Regulators - Cost estimation of
Regulation Plans

Whatever the point of view may be, either local or global, regulators cannot have
a precise idea of the effects of restrictions on traffic flows they impose because of
the very large volume of data, the great interdependency between sectors, and
the complexity of the air route network.

The interest of a simulation aid tool is to let the prominent rôle and the final
choice to the regulators when they have at their disposal the cost estimation of a
regulation plan provided by clp(FD). Cost estimation can integrate criteria such
as the average or maximum delay, the number of delayed flights, the number and
duration of planned restrictions, the average number of restrictions affecting a
flight, the difference between demand and capacity (it allows to save a security
margin for imponderables). Such a tool can help them to avoid imposing unnec-
essary restrictions on flows. Our work has been integrated into the simulation
aid tool SPORT (from which we have provided hardcopies in this paper). This
integration has been easy to do because clp(FD) allows to obtain a C runtime
program.

5 Conclusion and Further Works

This paper has shown how CLP is well adapted to solve ATFM problems such
as departure slot allocation satisfying different types of constraints. Describing
a possible extension of this practical application (flow rate regulation), we have
highlighted expressiveness and flexibility of the CLP approach. It seems that

numerous ATFM applications can benefit from CLP advantages. Among them,
we will now investigate other applications like rerouting, automatic search of
flow rate regulations, evaluation of a capacity change cost, evaluation of flow
constraints cost. The efficiency of clp(FD) language gives us a good hope to
realize interesting further works.

References

1. M. Bonnard, S. Manchon, and P. Planchon. Bilan des études de la division AOC
sur la régulation du trafic aérien, 1992.

2. P. Codognet and D. Diaz. Compiling constraints in clp(FD), draft, 1993.
3. D. Colin de Verdière. Utilisation des techniques de recherche opérationnelle pour

les études Air Traffic Management, 1992.
4. D. Diaz. clp(FD) User’s Manual. INRIA, Le Chesnay, France, 1994.
5. D. Diaz. wamcc Prolog Compiler User’s Manual. INRIA, Le Chesnay, France, 1994.
6. D. Diaz and P. Codognet. A minimal extension of the WAM for clp(FD). In 10th

International Conference on Logic Programming, Budapest, Hungary, 1993. MIT
Press.

7. J.M. Garot. Airspace Management in Europe: issues and solutions. In IFORS
1993: 13th International Conference of Operational Research, Lisbon, Portugal,
1993.

8. R.M. Haralick and G.L. Elliot. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, no 14:pp 263–313, 1980.

9. P. Van Hentenryck. Constraint satisfaction in logic programming. In Logic Pro-
gramming Series, Cambridge, 1989. MIT Press.

10. P. Van Hentenryck, Y. Deville, and C.M. Teng. A generic arc-consistency algorithm
and its specializations. Artificial Intelligence, no 57:pp 291–321, 1992.

11. P. Van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing in cc(FD),
draft, 1991.

12. P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint satisfaction using
constraint logic programming. Artificial Intelligence, no 58:pp 113–159, 1992.

13. J. Jaffar and J.L. Lassez. Constraint logic programming. In Principles Of Pro-
gramming Languages, Munich, Germany, January 1987.

14. J. Jourdan. Modelisation of terminal zone aircraft sequencing in constraint logic
programming, 1992.

15. A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence, no
8:pp 99–118, 1977.

16. S. Manchon, D. Chemla, C. Gobier, and P. Kerlirzin. Dossier de spécifications du
Système Prétactique pour Optimiser la Régulation du Trafic aérien: SPORT V4.3,
1992.

17. B.A. Nadel. Constraint satisfaction algorithms. Computationnal Intelligence, no
5:pp 188–224, 1989.

	Using clp(FD) to Support Air Traffic Flow Management

