J. LOGIC PROGRAMMING 1996:27:1-199 1

COMPILING CONSTRAINTS IN clp(FD)

PHILIPPE CODOGNET AND DANIEL DIAZ

> We present the clp(FD) system: a Constraint Logic Programming lan-
guage with finite domain constraints. We detail its implementation and
present an abstract instruction set for the constraint solver that can be
smoothly integrated into the WAM architecture. It is based on the use of a
single primitive constraint X in r that embeds the core propagation mech-
anism. Complex user constraints such as linear equations or inequations
are compiled into X in 7 expressions that encode the propagation scheme
chosen to solve the constraint. The uniform treatment of a single primitive
constraint leads to a better understanding of the overall constraint solving
process and allows three main general optimizations that encompass many
previous particular optimizations of “black-box” finite domain solvers. Im-
plementation results show that this approach combines both simplicity and
efficiency. Our clp(FD) system is about four times faster than CHIP on
average, with peak speedup reaching eight. We also show that, following
the “glass-box” approach, c1p(FD) can be naturally enhanced with vari-
ous new constraints such as constructive disjunction, boolean constraints,
non-linear constraints and symbolic constraints. <

1. INTRODUCTION

Constraint Logic Programming (CLP) has shown to be a very active field of research
over recent years, and languages such as CHIP [21, 44, 2], CLP(R) [26, 28] and
ProloglIII [17] have proved that this approach opens Logic Programming (LP) up
to a wide range of real-life applications.

Address correspondence toPhilippe Codognet and Daniel Diaz, INRIA-Rocquencourt, BP 105,
78153 Le Chesnay, FRANCE. email: {Philippe.Codognet,Daniel.Diaz}@inria.fr

THE JOURNAL OF LOGIC PROGRAMMING

(©Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743-1066/94/3$3.50

The basic idea of CLP [26] is to replace unification by constraint solving over
a particular domain of interest, considering the constraint solver as a “black-box”
that is responsible for checking the consistency of a set of constraints and, possibly,
for reducing it into some normal form. Although this dichotomy is very important
from the theoretical point of view, and makes it possible to import many results
from LP semantics into CLP, it is not very satisfactory from the practical point of
view. It may be noted that there is a curious lack of literature about the practical
side of CLP...

One of the major breakthroughs of the last decade in LP has arguably been the
definition of the Warren Abstract Machine (WAM) [50] that became a de facto
standard for the compilation of Prolog and has helped many researchers to gain
a better understanding of Prolog’s execution and to develop efficient LP systems.
Moreover the WAM proved to be flexible enough to remain the backbone of various
extensions such as Higher-Order, parallel or concurrent LP. To return to CLP,
we could but deplore the fact that the black-box approach does not give much
information about the architecture of a real CLP system, and does not lead to the
design of an abstract machine for constraints. One of the main issues is that there
should be as many abstract machines as constraint domains and solvers.

We chose to focus on Finite Domains (FD), as introduced in LP by the CHIP
language, where constraint solving is done by propagation and consistency tech-
niques originating from Constraint Satisfaction Problems [48, 30, 33]. Very close to
those methods are the interval arithmetic constraints of BNR-Prolog [4]. Luckily, a
recent paper [46] broke the black-box monopoly by unveiling a “glass-box” for FD
constraints. The basic idea is to have a single constraint X in r, where r denotes
a range (e.g. t1..t2). More complex constraints such as linear equations and inequa-
tions are then defined in terms of this primitive constraint. The X in 7 constraint
can be seen as embedding the core propagation mechanism for constraint solving
over FD, and should be a good basis for an abstract machine for CLP(FD)?.

We have thus developed an extension of the WAM for FD based on the X in r
constraint, and we propose an instruction set to implement this constraint that is
very much more in the spirit of the WAM. It is also worth noticing that the basic
WAM architecture and data structures are left untouched, e.g. the representation
of choice-points, environments and non-FD terms is not changed. Complex FD
constraints are translated at compile-time into a set of X in r constraints that
really encodes the propagation scheme chosen to solve the constraint. This makes
it possible to express at a high level the constraint solving scheme and to change
it very simply if desired. Indeed the X in r expressions give us a language to
express propagation methods, which is obviously not the case with the black-box
approach of CHIP or BNR where one has to get down to C for any change. Also the
uniform treatment of a single primitive for all complex “user” constraints leads to a
better understanding of the overall constraint solving process and allows for (a few)
general optimizations, as opposed to the many local and particular optimizations
hidden inside the black-box. Hence, we have designed three simple but powerful
optimizations for the X in r constraint that encompass many previous particular
optimizations for FD constraints. Implementation results show that this approach
was sound and can be competitive in terms of efficiency. On a traditional set of

Lalthough the authors introduced it in the context of concurrent constraint languages [40].

benchmark programs, our clp(FD) engine is about four times faster than the CHIP
system, with peak speedup reaching eight.

The rest of this paper is organized as follows. Section 2 presents the FD con-
straint system and Section 3 explains the use of X in 7 to define high-level con-
straints. Section 4 describes the integration of X in r into the WAM, presents the
compilation scheme and details the work performed when telling a constraint, while
Section 5 presents implementation results of the c1p(FD) system. Results of a basic
implementation are first presented and analyzed before we propose three optimiza-
tions whose impact is then assessed. Section 6 shows the ability of c1p(FD) to deal
with disjunctive constraints in an active manner. Section 7 presents clp(B/FD) an
efficient boolean solver built on top of ¢1p(FD). Section 8 shows how a generalization
of X in r allows the user to define in a declarative way many symbolic constraints
usually “wired” in black-box solvers. A short conclusion and perspectives end the

paper.

2. THE FD CONSTRAINT SYSTEM

The FD constraint system is a general purpose constraint framework for solving
discrete constraint satisfaction problems (CSP). It was originally proposed by Pas-
cal Van Hentenryck in a concurrent constraint setting [46]. FD is based on a single
primitive constraint by which complex constraints are defined, so for example con-
straints such as X =Y or X < 2Y are defined by FD constraints, instead of being
built into the theory. This constraint is thought of as propagation rules, i.e. rules
for describing node and arc consistency propagation (see [48, 30, 33] for more details
on CSPs and consistency algorithms). We present here the basic notions underlying
the FD constraint system.

A domain in FD is a (non empty) finite set of natural numbers (i.e. a range).
More precisely a range is a subset of {0,1,...,infinity} where infinity is a par-
ticular integer denoting the greateast value that a variable can take?. Dom is the
set of all domains. We use the interval notation ki..ks as shorthand for the set
{k1,k1 +1,...,ka}. From a range r we define min(r) (resp. maz(r)) as the lower
(resp. upper) bound of r. In addition to standard operations on sets (e.g. union,
intersection, etc.) we define pointwise operations (+, —, *, /) between a range r and
an integer ¢ as the set obtained by applying the corresponding operation on each
element of d. Finally, V,; is the set of FD variables, i.e. variables constrained to
take a value in a given domain.

2.1. Syntax of X in r

As mentioned above, the FD constraint system is based on a unique constraint
X in r. There are three kinds of syntactic objects: constraints (c), ranges (r)
and arithmetic terms (¢ and ¢t for constant terms). Constr is the set of syntactic
constraints, SynDom is the set of syntactic domains and SynTerm is the set of
syntactic terms.

2from the implementation point of view this value depends on the machine.

Definition 2.1. A constraint is a formula of the form X in r where X € V; and
r € SynDom (cf. syntax in Table 1).

ci= X inr
ru= t1. .ty (interval)
{t} (singleton)
R (range parameter)
dom(Y") (indexical domain)
L Ta (union)
ry & ro (intersection)
-r (complementation)
r + ct (pointwise addition)
r - ct (pointwise subtraction)
r * ct (pointwise multiplication)
r/ ct (pointwise division)
t = min(Y) (indexical term min)
max (Y) (indexical term max)
ct (constant term)
t1+to | t1-to | t1*to | t1/<ts | t1/>t (integer operations)
ctu= C (term parameter)
n | infinity (greatest value)
cti+cts | cti—cty | cti*cty | cty/<ctoy | ct1/>cto
Table 1. Syntax of X in r constraints
We will use X = n as shorthand for X in n..n. Intuitively, a constraint

X in r enforces X to belong to the range denoted by r that can be not only a
constant range (e.g. 1..10) but also an indexical range using:

e dom(Y) representing the whole current domain of Y.
e min(Y) representing the minimum value of the current domain of Y.
e max(Y) representing the maximum value of the current domain of Y.

When an X in r constraint uses an indexical on another variable Y it becomes
store sensitive and must be checked each time the domain of Y is updated. A
constraint can also use parameters which are run-time constant values. Let us
remark that the FD constraint system is closed under negation since the constraint
=X in risjust X in -r.

A store is a finite set of constraints. A store is in normal form iff it contains
exactly one constraint X in r for each variable X € V;. From any store S we
obtain a store in normal form by replacing all constraints X in 71, X in rg,
..., X in 7, on X by a single constraint of the form X in r & 70 & ... & 7,.
These sets are obviously equivalent since they have the same tuples of solutions. In

the following we always consider stores in normal form, in particular the result of
S U{c} is a store in normal form obtained by the addition of ¢ to S (see section 2.2
for details about this operation). Store is the set of all stores.

During computation, a constraint can succeed, fail or suspend. For example, let
us consider the store {X in 3..20,Y in 5..7:10..100}:

e X in 10..50 succeeds and the new store is:
{X in 3..20 & 10..50,Y in 5..7:10..100},LGJ
{X in 10..20,Y in 5..7:10..100}

e X in 30..50 fails.

e X in min(Y)..40 suspends and the new store is:
{X in 3..20 & 5..40 & min(Y)..40,Y in 5..7:10..100},Lex
{X in 5..20 & min(Y)..40,Y in 5..7:10..100}.
Let us remark that the (indexical) constraint X in min(Y)..40 provides a
constraint evaluated in the current store (i.e. X in 5..40) and remains in
the store to propagate future reductions of the domain of Y.

e X in dom(Y)+1 suspends and the new store is:
{X in 3..20 & 6..8:11..101 & dom(Y)+1,Y in 5..7:10..100},LeJ
{X in 6..8:11..20 & dom(Y)+1,Y in 5..7:10..100}.

A constraint ¢ can be removed from the current store only if it succeeds. If ¢ sus-
pends, it must remain in the store. Hence in the third example, X in min(Y)..40
must remain in the store as long as min(Y') is greater than min(X). Indeed, at
each modification of min(Y"), that constraint will be triggered to check consistency
with the domain of X, reducing it if necessary.

2.2. Semantics of X in r

The addition of a constraint in a store is a tell operation. We present a denotational
semantics for this operation in Table 2. The function 7 [X in r] S gives the
semantics of the T'ell operation consisting in adding the constraint X in r to the
store S. This consists in updating X (wrt r evaluated in S) and in reactivating
all constraints depending on X (i.e. propagation). The first phase is ensured by
the semantic function 7/ [X in r] and the propagation is simply modeled using
a fixpoint operator on the result of 7 [X in r] that re-evaluates all constraints in
SU{X in r} (via 7’ until quiescence). It is worth noticing that the intermediate
funcion 7' [X in r] adds two instances of the constraint X in r to the store:

(a) one where r is evaluated in S (see the semantic function &, [r] where
[E- [7] s] represents the syntactic domain associated to the evaluation of

r)

(b) one where r is unchanged to allow future reconsiderations of this constraint
in the presence of an indexical range.

To evaluate an indexical (e.g. dom(X)) it is necessary to get the current domain
of a variable. Thanks to point (a), this comes down to obtaining the constraint
X in r associated to X (cf. lookup_store function) and to evaluating r in an

SynDom : syntactic domains T : Constr — Store — Store

SynTerm : syntactic terms 7' . Constr — Store — Store
Dom : domains & SynDom — Store — Dom
N : natural numbers & SynTerm — Store — N
Constr : X in r constraints
Store : stores

T [c] s =fix A s. Upesuia 7' [] 9)

7' [z in r] s =letd=[& [r]s]insU{z in d}U{ 2 in r }

gr [[tl..tgﬂs th [[tl]]s..ft [[tz]]S

& [{1}] s — & [t] 5}

E[R] s = lookup_range (R)

Er [dom(Y)] s = cur_domain(X,s)

E-[r1 + re] s =& [r]s U& [ra] s

E-[r1 & r2] s =& [m]sn & [ra] s

E-[-r] s = 0.infinity \ & [r] s

Err + ct] s =& [r]s + & [ct] s

E[r - ct] s =& [r]s — & [ct] s

E-[r * ct] s =& [r]s x & [ct] s

E-[r / ct] s =& [r]s/ & [ct] s

& n] s =n

& [infinity] s = infinity

& [C] s = lookup_term(C)

& [min(Y)] s = min(cur_domain(X,s))

& [max(Y)] s = maz(cur_domain(X,s))

o Ht1+t2ﬂ$ =& [[tl]]erEt [[tg]]s

gt Htl—tzﬂs :gt [[tl]]s—f)t [[tg]]s

gt [[tl*tgﬂs :gt [[tl]]s*gt [[tg]]s

gt [[tl /< tQ]]S :I_gt [[t1HS/8t IItQ]]SJ

o [[tl /> tQ]]S :[gt Htlﬂs/é‘t [[tg]]S]

cur_domain(X,s)
lookup_store(X,s)

lookup_range (R)
lookup_term(C)

= &, lookup_store(X,s)
=if3 X in r € s then r else 0. .infinity

returns the domain bound to R
returns the integer bound to C'

Table 2. Denotational semantics of the Tell operation

empty store (cf. cur_domain function) to avoid the evaluation of the indexicals of
T,
We will use the following shorthands to avoid cumbersome notations:

e Xg = cur_domain(X,S) (i.e. the value of the domain of X in S).
e min(X)s = min(Xg).

e max(X)s = mazx(Xg).

e rg =&, [r] S (ie. domain denoted by 7 in S).

o tg =& [t] S (ie. integer denoted by ¢ in .S).

Definition 2.2. A store S is consistent iff it does not contain any empty domain,
ie. VX eV; Xg#0.

Definition 2.3. A variable X is instantiated to n in the store S iff Xg = {n}.

Definition 2.4. Let S and S’ be two sets of constraints, S’ is stronger than S
(S"C9iff vX eV; Xo C Xs.

One important requirement is that telling a constraint has to be a monotonic
operation. From a theoretical point of view this ensures the existence of a fixpoint
(since all domains are finite). From a practical point of view this makes it possible
to remove impossible values as soon as they appear and to avoid reconsidering of
accumulated information when a constraint is told. The tell of a constraint X in r
is monotonic if the range denoted by r is monotonic, i.e. can only decrease when
more constraints are added [46].

Definition 2.5. A range r is monotonic (resp. anti-monotonic) iff
vS, 8" S'CS = rg Crg (resp. s Crg).
A constraint ¢ = X in r is (anti-)monotonic iff r is (anti-)monotonic.

In that case, the tell of a constraint X in 7 simply consists in removing impos-
sible values of X, which do not belong to r (see Figure 1). This comes down to an
intersection operation between X and r (see also the above definition of a store in
normal form). Figure 1 schematize this operation.

To ensure that r is monotonic, some syntactic restrictions have to be made on
the use of the indexicals. Intuitively, a “positive” occurrence of min(X) (resp.
maxz(X)) must be used in the lower (resp. upper) part of the range and conversely
for a “negative” occurrence. The indexical term dom(X) must be used in “positive”
occurrences. An incorrect use of dom(X) could be X in -dom(Y). Indeed, as the
domain of Y decreases, its complementary increases. The simplest way to deal with
an incorrect indexical min/max/dom(X) is to wait until X becomes instantiated, in
such a case the indexical is constant and thus monotonic. So, the tell of a constraint
containing an incorrect indexical term on X should be delayed until X has been

range denoted by

domain of X T {monotonic)

i nconsi st ent
val ues for X

Figure 1. Telling a constraint X in r

instantiated. An elegant solution to achieve such a suspension is to move to the
concurrent constraint framework and to use an ask mechanism [40], but staying in
the CLP approach a simple solution is to use some well-known delay mechanism
(freeze, wait, etc.) [27]. In our approach this is achieved using a new indexical
term val(X) that delays the activation of a constraint in which it occurs until X
has been instantiated (see for example the below definition of X # Y).

2.3. Constraint Systems

The simplest way to define constraints is to consider them as first-order formulas
interpreted in some non-Herbrand structure [26], in order to take into account
the particular semantics of the constraint system. Such declarative semantics is
adequate when a non-Herbrand structure exists beforehand and suitably fits the
constraint system (e.g. R for arithmetic constraints), but it does not work very well
for more practical constraint systems (e.g. finite domains). Obviously, it cannot
address any operational issues related to the constraint solver itself. Recently,
another formalization has been proposed by [41], which can be seen as a first-
order generalization of Scott’s information sytems [42]. The emphasis is put on the
definition of an entailment relation (noted) between constraints, which suffices
to define the overall constraint system. Such an approach is of prime importance
in the framework of concurrent constraint languages, but is also useful for pure
CLP, as it makes it possible to define a constraint system ex nihilo by giving the
entailment relation and verifying some basic properties. The entailment relation
is given by rules, and we can therefore define a kind of operational semantics of
the entailment between constraints. This will be particularly useful when defining
our propagation-based boolean constraint system, as the entailment relation will
accurately represent how information is propagated between constraints.

Definition 2.6. [41]
A constraint system is a pair (D,) satisfying the following conditions:

1. D is a set of first-order formulas closed under conjunction and existential
quantification.

2. F is an entailment relation between a finite set of formulas and a single
formula satisfying the following inference rules:

SiFd SodbFe

S,dt d (Struct) S S, ke (Cut)
Sadael_f S|_d Sl—e

Sanerf M Teraae - BN
S.d-e S dt/X]

Saxare 0N Sraxa 9

In (3F), X is assumed not free in S, e.

3. Fis generic: that is S[t/X] F d[t/X] whenever S |- d, for any term t.

In order to build constraint systems, it suffices to define a pre-constraint system
(D,F) satisfying only (Struct), (Cut) and the genericity condition. Existential
quantification and conjunction can be added in a straightforward way, as stated by
the following theorem.

Theorem 2.1. [41] Let (D',F') be a pre-constraint system. Let D be the closure of D’
under existential quantification and conjunction, and & the closure of ' under
the basic inference rules. Then (D,F) is a constraint system.

As an important corollary, a constraint system can be constructed even more
simply from any first-order theory, i.e. any set of first-order formulas. Consider a
theory T and take for D the closure of the subset of formulas in the vocabulary of T'
under existential quantification and conjunction. Then one defines the entailment
relation k7 as follows. S Fp d iff S entails d in the logic, with the extra non-logical
azioms of T. Then (D, Fr) can be easily verified to be a constraint system.

Observe that this definition of constraint systems thus naturally encompasses
the traditional view of constraints as interpreted formulas.

2.4. Entailment Relation

Here we define the entailment relation and prove that FD is a constraint system.

Definition 2.7. A store S entails a constraint ¢ = X in r iff ¢ is true in any store
S’ stronger than S, i.e.

Ske iff ¥S' S'CS = Xg Cry

A store S disentails a constraint ¢ = X in r iff S entails —¢,ie. SE X in -r.

The following proposition states that (Constr,) is a pre-constraint system (the
proof can be found in [19]).

Proposition 2.1. the relation = (as defined in Definition 7) satisfies (Struct), (Cut)
and is generic.

10

Thanks to Theorem 2.1, we can define D as the closure of Constr under existen-
tial quantification and conjunction, and F3 as the closure of the entailment relation
under the basic inference rules, then FD=(D,}) is a constraint system.

Finally, we can also define an equivalence between constraints to capture the
fact that two constraints provide the same tuples of solutions.

Definition 2.8. two constraints ¢; and ¢y are equivalent if VS Stkc¢; < St cs.

3. HIGH-LEVEL CONSTRAINTS

From the basic X in r constraints, it is possible to define high-level constraints,
called user constraints, as Prolog predicates. Each constraint specifies how the
constrained variable must be updated when the domains of other variables change.
In the clp(FD) system, basic user constraints are already defined via a library.
CHIP-like constraints such as equations, inequations and disequations can be used
directly by the programmer. A preprocessor will translate them at compile time. So,
from a user point of view, c1p(FD) offers the usual constraints over finite domains
as proposed by CHIP together with the possibility to define new constraints in a
declarative way and, from an implementation point of view, only the basic X in r
has to be implemented.

3.1. Basic User Constraints

Let us now see how to define simple high-level constraints. In the following examples
X,Y, Z are FD variables and C' is a term parameter (runtime constant value).

Ezample 5.1.

Yx=y+c’ (X,Y,C):- X in min(Y)+C. .max(Y)+C,
Y in min(X)-C..max(X)-C.

'x+y=2’(X,Y,Z2):- X in min(Z)-max(Y)..max(Z)-min(Y),
in min(Z)-max(X)..max(Z)-min(X),
Z in min(X)+min(Y) . .max (X)+max(Y).

<

x>y’ (X,Y) - X in min(Y)..infinity,
Y in 0..max(X).

>

Yx£y? (X,Y) - in -{val(Y)},

Y in -{val(X)}.

In the user constraint ’x#y’ (X,Y) the constraint X in -{val(Y)} is delayed
until Y is bound (in a forward checking manner, cf. [24]) as explained above.

3we reuse the same notation for this entailment relation to avoid heavy notations.

11

The propagation scheme used in the user constraint >x=y+c’ is a partial lookahead,
namely only changes on min and max of X and Y are propagated. A full lookahead
scheme could be specified by:

Ezample 3.2.

’x=y+C’(X,Y;C):_ X in dOHl(Y)"’C’
Y in dom(X)-C.

3.2. Linear Arithmetic Constraints

We here describe how arithmetical constraints (equations, disequations, etc.) are
managed in c1p(FD).

Definition 3.1. A linear arithmetic constraint is an expression E.F where E and
F are linear arithmetic expressions and . € {=,#, <, <, >, >}.

The first step when compiling an arithmetic constraint consists in normalizing
the constraint. Namely, a constraint E.F' is transformed in an equivalent form S.T
where S = a1 *x1+...+ag*xxp+cand T = agq1 * Tpy1 + ...+ an * T, +d. Each
x; is a distinct variable, each a; is an integer > 0 (since FD only deals with natural
numbers), ¢ and d are two positive constants such that either ¢ or d is equal to 0.

For instance the equation 2« F +2x H — 20 = F'+ 3« H — G — 10 becomes
F+ G = H+10. The normalization phase groups the terms according to variables.
Doing this we obtain approximations (i.e. intervals min..maz) which are much
more accurate than those obtained when dealing with several occurrences of a
same variable independently. Indeed, in this case arc-consistency would give rise
to an approximation for each occurrence of a variable X (since it is not complete).
The resulting approximation will then encompass the approximation associated to
each occurrence of X. Performing a normalization step we obtain only one, more
precise, approximation for X.

Each normalized term S and 7' is then sorted on its coefficients in descending way
in order to add the constraints that achieve the larger pruning before the others.
From a normal form, there are two main solutions to compiling a linear constraint:
compilation to inline code or compilation to library calls.

3.2.1. Inline Code. An X in r expression is generated for every variable z; (i.e.
each variable is defined from the n — 1 others).

Ezample 3.3. The equation F' 4+ G = H + 10 will be translated as follows:
F=H+10—G F in min(H)+10-max(G) . .max(H)+10-min(G) (cp)

G=H+10—F G in min(H)+10-max(F)..max(H)+10-min(F) (cq)
H=F+G-10 H in min(F)+min(G)-10..max(F)+max(G)-10 (cp)

12

The major drawback of such a method is that the code size generated is quadratic
in the size of the input [8]. Another drawback is that a lot of redundant evaluations
are made by all constraints. For instance, in A+ B+ D =F+G+ H+T if D
is modified then F + G + H + T is evaluated twice (to update A and B) and
A+ B+ D is evaluated four times (to update F', G, H and T). The last drawback
is that each time a variable is modified, all constraints are triggered involving a
reconsideration of all other variables. However, the modification of a variable often
has no impact on other variables (due to the incompleteness of the arc-consistency).
Since this compilation scheme cannot detect this situation it will awake uselessly
n — 1 constraints. Consider again Example 3 in the following store:

{F in 0..15,G in 0..15}
giving:
{F in 0..15,G in 0..15,H in 0..20, ¢, cg, cu}

Suppose now that the constraint F in 5..15 is added to the store. c¢g is re-
evaluated and the resulting range is —5..30 which already includes the current
domain of G (which is thus not reduced). ¢y is also re-evaluated and provides the
range —10..20 which includes the current domain of H (which is not reduced). And
so on for all other variables.

Because of all these drawbacks we have chosen the next alternative in c1p(FD).

3.2.2. Library calls. The main idea is to split the linear constraint into several
linear constraints introducing intermediate variables. Each linear constraint gives
rise to a call to a specific user constraint defined in a library. These basic constraints
are very similar to those presented in Example 1.

Ezample 3.4. The equation F' 4+ G = H + 10 could be translated as follows:

F+G=1 *x+y=2z’ (F,G,I)
I=H+10 ‘’x=y+c’(I,H,10)

The code produced in this scheme is thus compact since it only consists of calls
to user functions (i.e. predicates). However, the major advantage of this method
stems from the introduction of intermediate variables which is a good way to both
factorize computations and help propagation to focus on the relevant part of a
constraint. Consider again Example 3 in the (same) store:

{F in 0..15,G in 0..15}
giving:

{F in 0..15,G in 0..15, I in 10..30, H in 0. .20,
F+G=1I,1=H+10}

13

When the constraint F in 5..15 is added to the store G is reconsidered from
min(I)-max(F)..max (I)-min(F) = 0..25 that already includes the current domain
of G (which is not reduced). I is checked from min(F)+min(G) . .max (F)+max(G)
= 5..30 and is not reduced since its current domain is included in 5..30. The
propagation step is now finished and H has not been (uselessly) reconsidered. The
impact of this optimization can be very great on complex arithmetical constraints.

Obviously there are many ways to decompose an expression [8]. Intuitively, if
the decomposition is too fine there are too many intermediate variables (giving
rise to an important overhead) and if the decomposition is too large we lose too
many sources of factorization. On the other hand the larger the decomposition, the
larger the library needed. In c1p(FD) the decomposition is done by groups of three
variables. Experiments have shown that this decomposition has good performance
and requires a limited library.

4. INTEGRATION OF X in » INTO THE WAM

Let us now show how to implement the FD constraint system (i.e. the single
constraint X in r) into the WAM. The reader is assumed to be familiar with basic
notions of the WAM (see [50, 3] for a detailed presentation of the WAM). We first
explain the extension of the WAM to deal with FD variables and after we detail
how X in r constraints are managed.

4.1. Modifying the WAM for FD Variables

Here, we explain the necessary modifications of the WAM to manage a new data
type: FD variables. They will be located in the heap, and an appropriate tag (FDV)
is introduced to distinguish them from Prolog variables (see section 4.2.4 for the
description of the data structure of an FD variable). Dealing with FD variables
slightly affects data manipulation, unification, indexing and trailing instructions.

4.1.1. Data Manipulation. FD variables, like standard WAM unbound variables,
cannot be duplicated (unlike for terms due to structure-copy). For example, loading
an unbound variable into a register consists of creating a binding to the variable
whereas loading a constant consists of really copying it. In standard WAM, thanks
to self-reference representation for unbound variables, the same copy instruction
can be used for both of these kinds of loading. There are two solutions to solving
the problem of loading an FD variable:

e reuse the same scheme as in standard WAM (i.e. same copy instruction +
self-reference). In this case the dereferentiation algorithm has to consider
a tagged word <FDV,a> as a word <REF,a>. This slows down the derefer-
entiation algorithm since there are now two kinds of words that can record
references.

e do not modify the dereferentiation algorithm and take care not to copy FD
variables. Namely, when a source word W, must be loaded into a destination
word Wy, if Wy is an FD variable then Wy is bound to Wy or else Wy is
physically copied into Wy.

14

In c1p(FD), we have chosen the second alternative to avoid penalizing portions
of pure Prolog code since the dereferentiation is an operation performed very often.
Also suppose we want to extend our engine with new constraint systems (e.g reals,
sets, lists, etc.). Since all these new data types will require taking care of the
loading, the first approach will really slow down the dereferentiation since there
will be too many possible referencing words.

Note that a tagged word <FDV,value> of an FD variable X will be never disso-
ciated from the other information of X (e.g. domain, etc.). Thus the value part
is useless (or can be used to encode a part of the information needed for X). In
clp(FD) we continue to use a self-reference since the presence of <FDV,a> alone
allows us to determine the address of X (i.e. «). This simplifies the extension of
all functions handling Prolog terms (e.g. display) which accept a tagged word as
input.

4.1.2. Unification. An FD variable X can be unified with:

e an unbound variable Y: Y is just bound to X,

e an integer n: equivalent to X in n..n?,

e another FD variable Y: equivalent to X in dom(Y) and Y in dom(X).

4.1.8. Indexing. The simplest way to manage an FD variable is to consider it
as an ordinary unbound variable and thus try all clauses. Obviously, doing more
complex indexing based on the actual values of the domain would be useful, e.g.
for optimizing the declarative definition of piecewise functions.

4.1.4. Trailing. In the WAM, unbound variables only need one word (whose
value is fully defined by their address thanks to self-references), and can only be
bound once, thus trailed at most once. These key properties make it possible to use
a simple-entry trail. With FD variables these two properties no longer hold and a
multiple-entry trail is needed.

Multiple-entry trail. A tagged trail is used to record the multiple values for FD
variables (min, maz, etc.). Hence we have three types of objects in the trail: one-
word entry for standard Prolog variables, two-word entry for trailing one previous
value, (n+2)-word entry for trailing n previous values (see Figure 1).

Avoiding useless trailing. Asthe domain of an FD variable is gradually reduced
(in many intermediate steps), the standard (WAM) criterion for trailing would lead
to much useless trailing. Indeed, only one trailing is necessary per choice point
for an FD variable. We thus use the time stamp method of [1] that consists of
adding a new register STAMP to number the choice points® and an extra cell per FD
variable that refers to the choice point of its last trailing. Then, an FD variable X
(including its stamp) needs to be trailed if Stamp(X) # STAMP.

Note that another alternative consists in recording, in the frame associated to an
FD variable, the address of its domain. When this domain is updated, if its address
is below the last choice point it is copied on the top of the heap, the old address is

4we will describe later how constraints are managed.
5j.e. STAMP is incremented at choice point creation and decremented at choice point deletion.

15

| TUV | address | Trail Unbound Variable

value
TOV \ address | Trail One Value

value n

value 1

n
TMV | address | Trail Multiple Values

Figure 1. Trail frames

trailed and updated to point to this new copy. This solution has two advantages: it
avoids using a new register (STAMP) and it only needs a one-value trail. Its drawback
is that an indirection is needed to access the domain of a variable. However these
two alternatives have more or less the same performance both in terms of memory
space and execution time.

4.2. Implementing X in r Constraints

In this section we study how to implement X in r constraints. We describe the
necessary new data stuctures and present an instruction set to compile X in r
constraints. Let us detail the necessary operations to execute a constraint X in r
and determine the data structures required:

evaluation of r: this concerns computing the range denoted by r, which implies
recording the address of the (compiled) code that performs this evaluation.
Since a range can depend on some arguments (i.e. indexical terms or param-
eters) it is necessary to record the context in which r must be evaluated. In
other words we need to record a pointer to the environment where the code
associated to r will take the values of the arguments it uses.

modification of X: this consists of updating X from the (previous) evaluation
of r. This obviously implies recording a pointer to X.

propagation of the changes: reexecute all constraints depending on X. This
implies recording, together with the domain of X, the list of constraints
depending on X.

Figure 2 schematizes the data structures used to manage X in r constraints.
All these data structures reside in the heap.

Cstr_Address+— Y in min(X)-C..max(X)-C

Tel | _Fdv_Adr
AF_Poi nt er

C_Frane

Chai ns Chai ns
Range Range
FDV FDV
FD Frane (X) FD Frane (Y)

X in mn(Y)+C. . max(Y)+C<+=—7Cstr_Address

Tel | _Fdv_Adr 1

AF_Poi nter -

C_Frane

Figure 2. Data structures for X in r constraints

4.2.1. Representation of Environments. An argument frame (A_Frame) repre-
sents the environment in which the constraint is called, it records addresses of FD
variables and values of parameters (see Figure 3). All the constraints defined in
the same clause share the same A _Frame. A new register AF will point to the cur-
rent A_Frame. In the following, FD variables will be referred to as fuv(i) (Frame
Variable) and parameters as fp(j) (Frame Parameter) where ¢ and j are indices in
the environment. For example, *x=y+c’ (cf. Example 1) will be translated into the
following pseudo-code:

Ezxample 4.1.

*x=y+c’ (X,Y,C):-
create a 3 elements A_Frame,
put X into A Frame (£fv(0)),
put Y into A _Frame (fv(1)),
put C into A_Frame (fp(2)),
fv(0) in min(fv(1))+fp(2)..max(£fv(1))+fp(2),
fv(1) in min(£v(0))-£fp(2)..max(£fv(0))-fp(2).

4.2.2. Representation of Constraints A constraint frame (C_Frame) is created
for every constraint. A new register CF will point to the current constraint. The
information recorded in a C_Frame is as follows (see Figure 4):

17

Argument n-1 | pointer to FD variable
Argument n-2 | or integer
: or pointer to range

AF — Argument 0

Figure 3. Argument frame (A _Frame)

e the pointer to the associated A _Frame,
o the address of the FD variable that is constrained®,

e the address of the associated code.

Cstr_Address | pointer to associated code
Tell Fdv_Adr | pointer to constrained variable
CF — | AF_Pointer | pointer to the A_Frame

Figure 4. Constraint frame (C_Frame)

4.2.3. Representation of Ranges. There are two representations for a range:

e Min-Max: only the min and the maxz are recorded. This representation is
then used to encode intervals (included in 0..in finity).

e Sparse: in addition to the min and the maz a bit-vector is used to record
each value of the range (in the range 0..vector_max). By default vector_max
equals 127 and can be redefined via an environment variable or via a built-
in predicate. However, bit-vectors are not dynamic (all bit-vectors have the
same size).

The initial representation for a range is always a Min-Max representation and is
switched to a Sparse representation when a “hole” appears in the range (e.g. due to
union, complementation, etc.). When a range R becomes Sparse, some values may
be lost since vector_max is less than in finity. To detect these sources of imcom-
pleteness, clp(FD) manages a flag for R which indicates that this range has been
extra constrained by the solver (via an imaginary constraint X in 0..vector_mazx).
The flag extra_cstr associated to each range is updated by all operations. For in-
stance, the union of two ranges is extra-constrained if at least one range is extra

Sfor readers with short memories: that is X in the constraint X in r.

18

constrained, thus the resulting flag is the logical or between the two flags. When
a failure occurs on a variable whose domain is extra constrained a message is dis-
played to inform the user that some solutions can be lost since bit-vectors are too
small. This solution has been adopted since it is simple, correct and because the
underlying algorithms can be implemented efficiently. It would be possible to use a
representation with lists of intervals or to use bit-vectors with a base 3 to encode a
Sparse range in B..0 + vector_maz. However, this would penalize the performance
since in many cases the domains are compact and near to 0. In any case it is
possible to state the problem with a translation.

Finally en empty range is represented with min > max. This makes it possi-
ble to perform an intersection between R; and Rs in Min-Maz mode simply with
max(min(Ry), min(Rg))..min(max(Ry), max(Rz)) which returns min > maxz if
either Ry or Ry is empty. Figure 5 shows all possible representations of a range.

01011011011010101
10100101101010010
10010011101001101
bit-vector
Ptr to bit—vector W Ptr to bit-vector —
Max Max Max
Min Min Min
W Extra constrained? Extra constrained?
enpty range interval range sparse range
(mn > max) (bit-vector unused) (bit-vector allocated)

Figure 5. Representations of a range

4.2.4. FD Variable Frame. The frame associated to an FD variable X is divided
into two main parts:

e the domain recording the range (see above) and the size of the range (number
of elements currently present).

e the constraints depending on X (i.e. several lists of pointers to C_Frames).

These two parts are not modified at the same time. Chains are created when
the constraints are installed whereas the domain can be updated during execution.
Each part has its own stamp and can thus be trailed independently. Several distinct
chains are used, in order to avoid useless propagation”:

“for instance, it is useless to reexecute a constraint depending on min(X) when only maz(X)
is changed.

19

e Chain Min: list of constraints depending on min(X) and not on max(X).
e Chain Max: list of constraints depending on max(X) and not on min(X).
e Chain Min Max: list of constraints depending on min(X) and on max(X).
e Chain Dom: list of constraints depending on dom(X).

e Chain Val: list of constraints depending on val(X).

Figure 6 summarizes the information recorded for an FD variable. Figure 7
shows the data structures involved in ’x=y+c’.

Chai n_val
i | Ghai n_Dom “ Lists of constraints
! | Chai n_M n_Max d di th i abl
Dependecy Part { | Chai n_Max ; ependi ng on the variable
1 | Chain_Mn BB
Chai ns_Mask -f--- Mask of non enpty lists
Chai ns_St anp -t--- Time stanp
/| Vect or T
i | Max K
P lMn Range
Donmmin Part + |Extra_Cstr !
Nb_El em -r--- Si ze of the donmin
\. | Range_St anp -r--- Time stanp
FDV m
Fd vari abl e

Figure 6. FD variable frame

4.2.5. Propagation Queue. As seen in Section 4.2, the propagation phase con-
sists of awaking and executing a set of constraints that could themselves enrich this
set by new constraints. As the overall order of execution is obviously irrelevant for
correctness, we could thus either manage an explicit propagation queue (or stack,
bag, heap, etc.) or handle an implicit continuation-based execution. This is very
similar to the execution of goals in logic programs where one can choose between
a Prolog depth-first search and a more complex handling of (active) goals in the
resolvent, as in concurrent logic languages. We have chosen the latter and maintain
an explicit propagation queue for reasons of flexibility (i.e. breadth-first search).
The small overhead induced by this scheme is largely counterbalanced by the poten-
tial for order heuristics and optimizations (see below). Moreover, our experiments
show that we reach the solution in this way more quickly than with a depth-first
search. Two registers BP and TP point to the base and the top of the queue. A
simple optimization consists in avoiding to enqueue all constraints but only a pair
< X, mask > where X is the updated variable (which has caused the propagation)
and mask is a bit-mask of dependency lists to awake (see Section 4.2.4).

Cstr_Address+— Y in min(X)-C..max(X)-C

Tel | _Fdv_Adr
AF_Poi nt er

C_Frane

Chai ns Chai ns
Range Range
FDV FDV
FD Frane (X) FD Frane (Y)

X in mn(Y)+C. . max(Y)+C<+=—7Cstr_Address

Tel | _Fdv_Adr 1

AF_Poi nter -

C_Frane

Figure 7. Data structures involved in ’x=y+c’

4.2.6. Registers. In order to manage the previous data structures, we need to
introduce new registers:

BP : Base Pointer to the propagation queue.
TP : Top Pointer to the propagation queue.
AF : pointer to the current A_Frame.

CF : pointer to the current C_Frame.

cC : Continuation after Constraint.

STAMP : choice point number.

T(t) : Term registers.

R(r) : Range registers.

As just mentioned, the registers BP and TP point the base and the top of the
propagation queue. The CC register points to the next instruction to execute after
the call constraint.

There is a bank of term registers (T(t)) and a bank of range registers (R(z))
used by the code evaluating the domain denoted by a range.

Remark that the standard WAM CP and Ai registers could be used instead of
CC, T(t) and R(r). But in that case they should be saved in the standard way
(allocate and deallocate for CP, try and retry for Ai registers), while this can
be avoided with these special registers and thus X in r constraints are compiled
as inline predicates.

21

4.3. Compilation Scheme

In this section we give an overview of the compilation scheme. A complete descrip-
tion of the instruction set can be found in Appendix A.1.

The compilation of a clause which contains at least one X in r constraint gives
rise to three groups of instructions:

Interface with Prolog clauses. Creates and loads an A_Frame. The space is
reserved at the top of the heap and addresses of FD variables and values of
parameters are loaded into this new A_Frame.

Installation code. Creates and loads a C_Frame. It also initializes the appropri-
ate chain lists for all FD variables used by this constraint. For example, in
the constraint ¢ = X in min(Y)..infinity, the installation code will add
a pointer to ¢ in the list of constraints depending on the min of Y.

Constraint code. This code is decomposed into four parts:

e loading parameters, indexical terms and ranges into appropriate reg-
isters. Useless loading is avoided: for instance, if a constraint uses
dom(X) and min(X), only the domain of X needs to be loaded because
it contains the min of X.

e ecvaluating the range r. The compilation of r is very easy, driven by
the constraint syntax. The syntactical tree of r is traversed bottom-up:
each leaf and each node give rise to a specific instruction. For leaves
corresponding to indexical terms (or parameters), copy instructions are
produced to set the appropriate registers from those loaded in the pre-
vious part. The final code can benefit from register optimization®.

e telling X in r (i.e. updating X w.r.t.). See section 4.4.

e returning.

Table 1 shows a fragment of code generated for our typical example ’x=y+c’.

4.4. Telling the Constraint X in r

Here, we detail the work done to tell a constraint. For a constraint X in r we
have the following possible behaviors:

If X is an integer, there are two possibilities:
e X € r: success (*)
o X & r: failure

or else (X is an FD variable whose range is rx) let ' be r Nrx:
o 1/ ={): failure

o 7' =rx (ie. rx Cr): success (*)

8in our compiler we reused the register allocation written for the WAM.

22

Yx=y+c’/3:
fd_set_AF(3,X(3)) environment for X, Y, C
fd_value_in_A_frame (X(0)) X is fv(0)
fd_value_in_A_frame(X(1)) Y is fv(1)
fd_term_parameter_in A _frame(X(2)) C is fp(2)
fd_install_constraint(inst_1,X(3)) install cstr_1
fd_call _constraint call cstr_1
fd_install_constraint(inst_2,X(3)) install cstr.2
fd_call _constraint call cstr.2
proceed Prolog return

inst_1:
fd_create_C_frame(cstr_1,0)
fd_install_ind min max(fv(1)) uses min(Y) and max(Y)
fd_proceed install return

cstr_1:
fd_ind min max(T(0),T(1),fv(1)) T(0)=min(Y), T(1)=max(Y)
fd_term_parameter (T(2),fp(2)) T(2)=C
£d_add(T(0),T(2)) T(0)=min(Y)+C
fd_add(T(1),T(2)) T(1)=max (Y)+C
fd_tell_interval(T(0),T(1)) X in min(Y)+C. .max(Y)+C
fd_proceed constraint return

inst_2:
¢...)

Table 1. Fragment of code generated for ’x=y+c’

e otherwise: the domain of X is replaced by ' (X possibly becomes instan-
tiated) and propagation occurs. Namely, as the domain of X has been
modified, some constraints should be reexecuted. Here, we take advantage
of having separate constraint chains (cf. Section 4.2.4). The current CC must
be pushed onto the stack (local or global) to restore it after propagation.

It is worth noticing that the issues marked with (*) correspond to cases where
the tell is useless (i.e. it neither fails nor reduces the domain of X). Thus, if we
know how to detect such a tell, it becomes possible to avoid it, as we will see later.

5. IMPLEMENTATION RESULTS

5.1. Basic Implementation

clp(FD) is based on the wamcc Prolog compiler developed at INRIA [16]. Its novelty
is to translate Prolog to C via the WAM. Predicates give rise to C functions,
WAM instructions to C macros. Its performances are similar to Quintus Prolog

23

(halfway between Sicstus 2.1 emulated and Sicstus 2.1 native code). The extension
to c1p(FD) gives rise to C boolean functions for X in r constraints.

Several traditional benchmark programs have been used (the sources can be
obtained by anonymous ftp, see Section 10):

e crypta: a cryptarithmetic problem on 10 variables ranging over 0..9, 2 over
0..1, 3 linear equations and 45 disequations [44].

e eql0: a system of 10 linear equations with 7 variables over 0..10.
e eq20: a system of 20 linear equations with 7 variables over 0..10.

e alpha: a cipher problem involving 26 variables over 1..26, 20 equations and
325 disequations.

e queens: the well-known N-queens problem [44] with N variables over 1..N
and 3 N x (N — 1)/2 disequations.

e five: the five houses puzzle [44] that involves 25 variables over 1..5, 11 linear
equations, 50 disequations and 3 disjuctions of 2 linear equations.

e cars: the car sequencing problem of [20] with 10 variables over 1..6, 50 over
0..1, 49 inequations and 56 symbolic constraints (element, atmost [44]).

The programs crypta, eql0, eq20 and alpha make it possible to test the effi-
ciency of c1p(FD) to solve linear equation problems. The other programs display
the ability of c1p(FD) to deal with forward checking constraints (queens), with dis-
junctions (five) and with symbolic constraints like element and atmost (cars).
In all programs only the first solution is computed and the labeling is done in the
standard way unless ff is stated which stands for first fail principle (i.e. favoring
labeling on variable with smallest domain [44]).

We can compare this basic implemention of c1p(FD) with other CLP systems
over finite domains, such as the CHIP 3.2 system first developed at ECRC and
then at COSYTEC. Exactly the same programs were run on both systems. The
machine used for both c¢1p(FD) and CHIP 3.2 was a Sparc station 2 (28.5 Mips).
Performances of the architecture above presented are fairly good. The average
speedup w.r.t. CHIP is around 1.5 for the linear equation programs and 3 for
the other programs. Full measurements for this implementation can be found in
Table 1.

However, if we analyze the decomposition of tells, we note that on average 75 %
of the total number of tells are useless (the best case being five with 57 % and
the worst case being queens 70 ff with 91 %). So we have studied where these
useless tells originate from and we have designed three general optimizations to
avoid some of them. We will evaluate the impact of each optimization on both the
total number of tells and on the execution times. These statistics are shown in
Table 2 and in Table 3.

5.2. Optimization 1

Many of useless tells stem from the fact that many constraints are equivalent, so it is
not necessary to reexecute them. Intuitively, all constraints inside a single user con-
straint have the same declarative meaning and would lead to such a phenomenon,
shown in the following example.

24

CHIP | c1lp(FD) | speedup
Program 3.2 2.1 factor
crypta 0.120 0.090 1.33
eql0 0.170 0.110 1.54
eq20 0.300 0.170 1.76
alpha 61.800 9.290 6.65
alpha ff 0.280 0.160 1.75
queens 16 2.830 1.620 1.74
queens 64 ff 0.990 0.220 4.50
queens 70 ff 42.150 47.960 1 1.13
queens 81 ff 1.620 0.430 3.76
five 0.030 0.010 3.00
cars 0.120 0.040 3.00

Table 1. Basic version of c1p(FD) vs. CHIP (in sec. on a Sparc 2)

Consider the constraint X =Y + 5, (’x=y+c’ (X,Y,5)) with a current store:

{X in 5..15,Y in 0..10}
giving:

{X in 5..15,Y in 0..10
X in min(Y)+5. .max(Y)+5 (Cx),
Y in min(X)-5..max(X)-5 (Cy)}

Let us now show in detail what happens if the constraint X in 12..100 is told.
X is set to 12..15 and thus its min is propagated to Y via Cy (Y in 7..10). Now,
as the min of Y has been modified, Cx (X in 12..15) will be reexecuted giving
rise to a useless tell (i.e. it does not modify the domain of X). Is is obviously
useless to evaluate X from Y because Y has just been computed from X. C'x and
Cy are equivalent.

Consider a constraint ¢ = X in r and an equivalent constraint ¢/ = Y in '
Let VU{Y} be the set of variables on which r depends, then obviously 7’ depends
on V U{X}. If ¢ has been executed due to a modification of ¥ then it is useless
to call ¢’ as it cannot reduce the domain of Y, because ¢ and ¢’ are equivalent. If
not, (¢ has been executed due to some Z € V) ¢’ has also been enqueued in the
propagation queue (due to Z). In both cases it is useless to enqueue ¢’ once ¢ has
been executed.

Optimization 1: telling c, it is useless to reexecute ¢’ if ¢’ is equivalent to c.

In clp(FD), we have designed all user constraints such as linear equations, in-
equations and disequations such that all constraints in the body of a user constraint
definition are equivalent. We recall that all constraints defined in the same clause
share the same A_Frame, and therefore to implement this optimization we only
have to compare the current AF with the one used by the constraint to be called.

25

When this optimization is effective it makes it possible to save on average 18 %
of tells and 12 % of the execution times (linear equations). In the worst cases, this
optimization is ineffective (queens).

5.8. Optimization 2

Another source of useless tell stems from entailed constraints whose (re)executions
are obviously useless since the tell operation is monotonic. Consider for example
the constraint X #Y (’x#£y’ (X,Y)) with a store:

{X in 1..10,Y in 1..10}
giving:

(X in 1..10,Y in 1..10,
X in -{val(N} (Cx),
Y in —{val(X)} (Cy)}

When X is set to 5, C'y is awoken and 5 is removed from the domain of Y. Thus,
the new store is:

{X=5,Y in 1..4:6..10, Cx, Cy}

Suppose now that a constraint Y=8 is told. After modification of the domain of
Y, the propagation reexecutes Cx giving rise to a useless tell. Indeed Cx is now
entailed (5 no longer belongs to the domain of V).

Since an FD solver based on local propagation is not complete, it is not realistic
to try to detect as soon as possible whether a constraint ¢ is entailed (it would
often imply enumerating the domain of the variables at each tell). So the best way
consists in using an approximation of the entailment check that is stronger than the
actual entailment condition. In c1p(FD), there is only one approximation condition
to detect the entailment of X in 7 which is a groundness check, i.e. SFX in r
whenever X is instantiated in S. For instance, in our previous example, when
Y=8 is told X in -{val(Y)} is detected to be entailed because X is instantiated.
Obviously, we have to take care that X has become instantiated before calling the
top-level constraint and not in the current propagation (i.e. all propagations due
to the reduction of the domain of X have been done).

Optimization 2: it is useless to reexecute X in r if X became instantiated before
the top-level call constraint.

To do this we use a new register (DATE) that is incremented at each constraint
call. When a variable becomes instantiated it is dated with the current date. For
this purpose a new cell is added to the FD variable frame.

Important remarks:

e for linear equations, the approximation X instantiated seems the best one
since we cannot decide about the entailment of X =Y before X (and thus
Y') are instantiated.

26

e for inequations there are better approximations. For example, X > Y is
entailed as soon as the domain of X is fully greater than the domain of Y.
Thus a better approximation would be min(X) > maxz(Y).

For disequations too there are better approximations. Indeed, X # Y is
entailed as soon as the domains of X and Y are disjoined. So (min(X) >
maz(Y)) V (max(X) < min(Y)) is a more accurate approximation.

In these cases it is not necessary to wait until the constrained variable is
instantiated to detect entailment.

e The better approximation conditions shown above can be produced auto-
matically from the syntax of the constraint [9, 19]. We will integrate this
facility when implementing the ask operator [40, 46].

e for some constraints the groundness approximation does not work (see for
example the definition of max(X,Y,Z) in Section 6.3) . These constraints are
then always reexecuted.

e it is possible to delete (and trail) an entailed constraint instead of dating it
and testing its date each time it is invoked. In clp(FD) we prefer to keep
it because we plan to implement some non-monotonic operations like the
dynamic deletion of a constraint in order to be able to deal with reactivity.

In the best cases it makes it possible to save as many as 85 % of tells and
72 % of the execution time (queens 70 ff). However, for linear equations this
optimization only makes it possible to save 18 % of tells while the impact on the
execution time is limited to 8 %.

5.4. Optimization 8

Many useless tells result from the fact that we have in the propagation queue
multiple occurrences of a single constraint awoken from several variables. Since the
order in which constraints are executed is irrelevant, this leads to many redundant
executions: only one instance of a constraint has to be present in the propagation
queue at any one time.

Optimization 3: if a constraint is already present in the propagation queue, it is
useless to add it again.

This can be achieved efficiently without scanning the whole propagation queue
by using some simple dating technique reusing the DATE register introduced for
optimization 2. A new cell is added to the constraint frame for dating the last call
to a constraint.

Linear equation problems benefit from this optimization as follows: 26 % of tells
and 17 % of the execution time saved. In the worst case (queens) this optimization
is ineffective.

5.5. Final Results

Table 2 shows the impact of all the optimizations together on the number of tells.
They make it possible to save on average 50 % of the total number of tells (45 % for

27

linear equation problems, 55 % for the other problems). Table 3 shows the impact
on the execution times. These optimizations save on average 30 % of the execution
time. Figure 1 shows the decomposition of the total time and of the total number
of tells for both the basic and the final versions. In conclusion, there are some
important remarks to make about our optimizations:

e The proportion of useless tells avoided is 66 % (see Figure 1). The remaining
33 % correspond to 50 % of the total number of tells in the final version (we
recall that this proportion was around 75 % in the basic implementation).
Among these 50 % we think that many of them could be avoided by a more
precise entailment detection than the current optimization 2 (see remarks in

Section 5.3).

e The execution time saved is on average 30 % to avoid 66 % of the total
number of useless tells. So we can conclude that, in the basic version, the
useless tells (75 %) correspond to 45 % of the total execution time (see
Figure 1). We can explain this by the fact that the time spent in a useless
tell of X in r is only the time necessary to evaluate the range r (since
there are neither updating of X nor propagation). For constraints submitted
to partial lookahead this evaluation only involves arithmetic operations on
integers that are usually very fast. So the upper bound of the ability of
the optimizations is 45 % on average. We think that our 30 % could be
improved with a more precise entailment detection. It is worth noticing that
for some problems the impact of the optimizations is very great. For example
queens ff 70 is around 4 times faster with the final version w.r.t the basic
implementation.

e The overhead introduced by these optimizations is very small (around 1 %).
See, for example, Table 3 where the queens program does not benefit from
the optimization 3.

e These optimizations are general (vs. ad-hoc optimizations of black-box
solvers). So any user constraint can benefit from them.

e In clp(FD), the ratio between the time spent for a useful and for a useless
tell is on average 3.5, i.e. a useless tell is 3.5 times faster than a useful tell
on average. However, in other architectures (e.g. concurrent constraint),
this ratio is closer to 1 since the evaluation of a constraint is often much
more expensive due to context copy, garbage collection, etc. Thus, in these
architectures the theoretical upper bound should be close to 75 % on average.

Table 4 shows the execution times for both CHIP 3.2 an c1lp(FD) on a Sparc
station 2. We also include the bridge benchmark [44] (whose source was provided
by COSYTEC) that involves 46 variables over 0..200, 91 linear inequations and 77
disjunctions of 2 linear inequations. On the linear equation problems the lowest
speedup factor is 2 with peaks reaching 8. On the other programs clp(FD) is
around 4 times faster than CHIP.

We can also compare clp(FD) with the CHIP compiler system. This compiler
is not publicly available but [2] presents execution times for the queens and the
bridge programs on a Sparc 1+ (18 Mips). We have thus normalized this times by
a factor 1/1.6 to obtain a fair comparison with our timings measured on a Sparc

28

Gain Analysis
H Program H Basic Final \ Gain \ Opt. 1 \ Opt. 2 \ Opt. 3
crypta 8919 5047 | 43.41 % || 22.67 % | 14.80 % | 26.93 %
eql0 15746 8739 | 44.50 % || 20.18 % | 12.99 % | 29.42 %
eq20 24546 | 14483 | 41.00 % || 11.90 % | 14.29 % | 26.12 %
alpha 904936 | 518793 | 42.67 % || 14.97 % | 26.32 % | 17.63 %
alpha ff 15124 6978 | 53.86 % || 21.81 % | 21.43 % | 33.54 %
queens 16 64619 | 31980 | 50.51 % 2.32% | 4819 % | 0.00 %
queens 64 ff 4556 2133 | 53.18 % 0.22 % | 52.96 % | 0.00 %
queens 70 ff || 2009404 | 278826 | 86.12 % 0.67% | 8545 % | 0.00 %
queens 81 ff 10633 3748 | 64.75 % 0.37 % | 64.38 % | 0.00 %
five 566 345 | 39.05 % || 13.60 % | 29.15 % | 3.36 %
cars 2483 1546 | 37.74 % || 27.67 % | 4.79 % | 21.51 %

Table 2. Impact of the optimizations on the number of tells

Gain Analysis

H Program H Basic | Final \ Gain \ Opt. 1 \ Opt. 2 \ Opt. 3
crypta 0.090 | 0.060 | 33.33 % || 18.18 % | 0.00 % | 20.15 %
eql0 0.110 | 0.080 | 27.27 % || 12.50 % | 6.25 % | 25.00 %
eq20 0.170 | 0.130 | 23.53 % 769 % | 7.69 % | 15.38 %
alpha 9.290 | 7.870 | 15.29 % 933% | 7.97% | 10.06 %
alpha ff 0.160 | 0.110 | 31.25 % || 18.75 % | 6.25 % | 18.75 %
queens 16 1.620 | 1.010 | 37.65 % 0.71 % | 3333 % | | 1.40 %

queens 64 ff 0.220 | 0.170 | 22.73 % 0.00 % | 22.22 % 0.00 %
queens 70 ff || 47.960 | 12.650 | 73.62 % 0.50 % | 71.88 % | | 1.10 %
queens 81 ff 0.430 | 0.290 | 32.56 % 0.00 % | 31.43 % 0.00 %

five 0.010 | 0.010 | 0.00 % 0.00 % | 0.00 % 0.00 %

cars 0.040 | 0.030 | 25.00 % || 20.00 % | 0.00 % | 20.00 %

Table 3. Impact of the optimizations on the execution times

Basi ¢ Version
100 %

75 %

50 %]

25 %+

0 %-
Tinme Tells

Optim zed Version

Time Tells

Usel ess
Tel l's

Usef ul
Tel l's

Figure 1. Comparison between the basic and the final version

CHIP | c1lp(FD) | speedup
Program 3.2 2.1 factor
crypta 0.120 0.060 2.00
eql0 0.170 0.080 2.12
eq20 0.300 0.130 2.30
alpha 61.800 7.870 7.85
alpha ff 0.280 0.110 2.54
queens 16 2.830 1.010 2.80
queens 64 ff 0.990 0.170 5.82
queens 70 ff 42.150 12.650 3.33
queens 81 ff 1.620 0.290 5.58
five 0.030 0.010 3.00
cars 0.120 0.030 4.00
bridge 2.750 0.640 4.29

Table 4. c1p(FD) vs. CHIP (in sec. on a Sparc 2)

29

30

2 (28.5 Mips). On these examples clp(FD) is still 3 times faster on average (see

Table 5).
CHIP | c1p(FD) | speedup
Program compiler 2.1 factor
queens 16 ff 0.040 0.010 4.00
queens 64 ff 0.490 0.170 2.88
queens 256 ff 14.560 6.930 2.10
bridge 2.068 0.640 3.23

Table 5. c1p(FD) vs. CHIP compiler (in sec. on a Sparc 2)

6. HANDLING DISJUNCTIVE CONSTRAINTS

The handling of disjunctive constraints is currently one of the major issues in CLP or
CSP approaches, as disjunctive constraints appear in many real-life problems such
as disjunctive scheduling, job-shop, bin-packing or spatial planning applications.
The most simple and traditional approach for handling a disjunction of constraints
in CLP is to use the non-determinism of the underlying logical engine, cf. [44], and
therefore relies on choice-point creation. This is certainly very convenient from the
programming point of view but leads to inefficiency and thrashing behavior because
of the naive backtracking scheme of Prolog. Intelligent backtracking can provide
improvement in some cases, see [10], but will be useless when the constraint network
is strongly connected and constrained variables are all inter-linked to one-another,
because in that case all choice-points are considered as pertinent.

Thus the most promising approach is to avoid creating choice-points and, when
necessary, create them in a dynamic (data-driven) way rather than in a static
(program driven) way. Such an approach is exemplified by the Andorra principle,
proposed in [51], which is at the core of languages such as Andorra-I [18] and AKL
[25], and favors deterministic computations by delaying non-determinate goals as
long as some determinate one exists in the resolvent. Indeed, the roots of such
a concept can be traced further back to the early developments of Prolog, as for
instance in the “sidetracking” search procedure of [35] that favors the development
of goals with the least alternatives. This is indeed nothing more than another
variant of the well-known first-fail principle.

These ideas have been pushed a bit further in CLP by the definition of the con-
structive disjunction operator of [46]. The basic concept underlying this notion is
to factorize the constraints entailed by all alternative branches and to add them
to the store as soon as possible, without creating a choice point. This can be for-
malized, when constraint systems are defined as lattices [41], by considering a glb
(greatest lower bound) operator between constraints in addition to the usual lub
corresponding to conjunction: glb(cy,ce) = {c¢/ec1 F ¢ Acg b ¢}. Thus disjunctive
constraints are used actively, even without creating choice-points. The power of
this approach has been shown on real-life applications in [29]. However this mech-
anism can be quite costly in finite domain solvers, because disjunctive constraints
have to be reconsidered after each propagation step that modifies some constrained

31

variable in order to extract some new commonly entailed constraint to tell. Ob-
viously such a scheme could be exported back into logic programming to handle
non-determinism, but it seems sensible only when branches of the disjunction are
flat, i.e. are reduced to constraints and not to logical predicates (that could lead
to unbound computations).

We will see that the FD constraint system provides a means of encoding a par-
ticular case of constructive disjunction for which the same pruning can be achieved
in a much simpler and more efficient way. We will also see that nearly all current
uses of constructive disjunction fit into that case.

6.1. A Simple Example

Lewis Carroll’s well-known “five houses” or “zebra” puzzle has long been used for as
a benchmark problem in the Prolog and CLP communities. The problem statement
involves five men living in five houses. The men each have a different profession,
nationality, favorite animal and favorite drink. There are fourteen facts describing
various aspects of the situation and the problem consists of assigning everyone (and
everything) to the right house and identifying the home of the zebra, etc.

The formulation of this problem in CLP [44] uses, for each of the five houses,
a variable for the nationality, profession, animal and drink. The facts will be
formulated as equality or disequality constraints between these variables. Among
the fourteen facts, three lead to disjunctive constraints. For instance a fact like:
“the Norwegian’s house is next to the blue one” means that it can be either on the
left or on the right. This will lead to a constraint of the form:

N6 =C4+1 or N6 =C4 -1

Therefore one has to introduce a predicate plus_or minus defined by:
Ezample 6.1.

plus_or minus(X,Y,C):- X = Y-C.

plus_or minus(X,Y,C):- X = Y+C.

Such a predicate will therefore create a choice-point for each invocation. However
a determinate predicate with identical declarative behavior but more efficient oper-
ational behavior can be defined in c1p(FD) thanks to the union operation between
ranges provided in the FD constraint system:

Ezample 6.2.

plus_or minus(X,Y,C):- X in dom(Y)-C : dom(Y)+C,
Y in dom(X)+C : dom(X)-C.

Let us consider the constraint plus_or minus(X,Y,1) with a store:

{X in 1..3,Y in 1..5}

32

The predicate defined in clp(FD) will remove the impossible value 5 from the
domain of Y (and will never create any choice point), whereas the first definition
will not. This corresponds to the behavior of a constructive disjunction. For the
complete “five house puzzle”, the second formulation is more than twice as fast as
the first one (used in the above comparison with CHIP, see Table 4).

6.2. “United we stand, divided we fall”

The idea consists in defining a formula F from a formula £ =c¢; Ve V... Ve, SO
that there is no disjunction in F. Two cases are interesting:

(a) E < F: the addition of F' to the store suffices and no choice point is needed.

(b) E = F: the addition of F' to the store is not enough to ensure the correctness
which will be then ensured by a choice point.

Let us study a case of (a) that occurs frequently. Consider a disjunction E = ¢;V
c2 V...V ¢, where all constraints ¢; have the form: X; in r{ A ... A X in r}
so that 1) all constraints X; in ré are equivalent and 2) all constraints ¢; contain
exactly the same variables, say {X1, ..., X;}. Intuitively this corresponds to a dis-
junction of user constraints having all variables in common and where each user
constraint is expressed as a conjunction of equivalent X in r constraints (e.g.
above example plus_or minus). Let us then define F' from F as follows:

X1 inr% AN /\innr,i
E= V...V, =V
Xiinr? A .0 A Xpdinry
Xiinri vV ...V Xy inr} Xyinrd ooy
F= A =V
Xk inr,lC Vo o... VvV X inrg X inr,lC A 44

E and F are equivalent since in E all constraints of a conjunction are equivalent.
We thus have a determinate formulation, as the disjunctive aspect is tackled at the
range level by the union operator. Indeed, for a variable X; the range associated
to each alternative is evaluated and X; is constrained to belong in the union of
each of these ranges. Observe that, thanks to the usual propagation mechanism
used in the FD system, ranges are recomputed as soon as one of their components
is modified and therefore in our case a union will be recomputed as soon as one of
its elements is modified, leading to a behavior identical to that of the constructive
disjunction. However this treatment is much simpler and more efficient as it does
not require telling the different alternative constraints (possibly performing a full
propagation step) and taking the common instantiations.

Nevertheless such a decomposition is not possible for disjunctions between con-
straints that do not satisfy the above syntactic restrictions, i.e. involving different
sets of variables, and we need a full constructive disjunction or rely on choice-point
creation in those cases. Let us finally note that a compromise can be used that
consists in deriving an approximation F' from F such that £ = F'. In this case the

33

addition of F' to the store is not enough to ensure the correctness and we will need
to create a choice point. However the constraint F' can be used to obtain an initial
pruning and the choice point creation can be delayed (e.g. until the enumeration
phase). For instance, from F = (X=4 A Y=3) V (X=8 A Y=6) we can define
F=&=4 v X=8) A (Y=3 V Y=6) sothat £ = F. The addition of F' to the
store will reduce the domain of X to {4,8} and the domain of ¥ to {3,6}. The
pruning obtained is great and makes it possible to delay the creation of a choice
point.

6.3. Further Examples

Let us review the high-level constraints for which constructive disjunctions have
been proposed and see whether they all satisfy the syntactic restrictions proposed
above, so that they can be efficiently implemented in the FD constraint system.

6.3.1. Mazimum Value. [46] proposes a constraint max(X,Y,Z) that holds iff Z
is the maximum of X and Y. This can be expressed in the following way:

Example 6.3.

‘max(x,y)=z’(X,Y,Z):- Z in min(X)..infinity,
Z in min(Y)..infinity,
Z in dom(X) : dom(Y).

The two first constraints ensure that Z is never less than X or Y and the third
constraint ensures that Z is either X or Z. Such a constraint in the store:

{X in 5..10,Y in 7..11,Z in 1..12}

will reduce the domain of Z to 7..11.

6.3.2. Disjunctive Scheduling. In scheduling problems it is necessary to state
that two tasks sharing the same resource cannot overlap, i.e that one is strictly
before or after the other. Consider a task 1 starting at 7’1 with duration D1 and a
task 2 starting at 72 with duration D2, the constraint to be expressed is:

TI+D1<T2 v T2+ D2<T1.
This translates in the FD constraint system as:

T1 in O0..max(T2)-D1 A T2 in min(T1)+D1..infinity V
T2 in 0..max(T1)-D2 A T1 in min(T2)+D2..infinity.

This can be defined in c1p(FD) as follows:

Ezample 6.4.

disjunction(T1,D1,T2,D2):-
T1 in 0..max(T2)-D1 : min(T2)+D2..infinity,
T2 in 0..max(T1)-D2 : min(T1)+D1l..infinity.

34

Let us consider the addition of the constraint no_overlap(T1,4,T2,8) in the store:
{T1 in 1..10, T2 in 1..10}

reducing the domain of 7'1 to 1..6 U 9..10 and the domain of T2 to 1..2 U 5..10.

6.3.3. Absolute Distance. Spatial planning problems often require dealing with
absolute values in order to state distance constraints. For instance [47] defines a
constraint |X — Y| > C and CHIP proposes a distance built-in predicate. This
can be expressed in clp(FD) in the following way, recalling the decomposition of
the > constraint:

Ezxample 6.5.

?|x-yI>=c’(X,Y,C):- X in min(Y)+C..infinity : O..max(Y)-C,
Y in min(X)+C..infinity : 0..max(X)-C.

Let us see in a simple example that this constraint achieves the same pruning as
the definition of [47]. Consider the constraint ’ |x-y|>=c’ (X,Y,8) with the store:

{X in 1..10,Y in 1..10}

The distance constraint will reduce the domains of X and Y to {1,2,9,10}.

7. clp(B/FD): A BOOLEAN CONSTRAINT LANGUAGE

The idea of considering booleans as a particular case of finite domains ({0,1}!) and
of reusing local consistency techniques to solve boolean constraints was first intro-
duced in the CHIP language. In fact, this approach was quite successful and it has
become the standard tool in the commercial version of CHIP, whereas the special-
purpose boolean solver of CHIP (based on boolean unification) is optional. An im-
portant by-product of this approach is that many extensions such as multi-valued
logics [49] or pseudo-booleans (linear equations over booleans) [5] are available for
free.

In CHIP, the particular propagation scheme of the boolean and, or and not con-
straints is, following the black-box approach, “wired” inside the solver and distinct
from the finite domain part, although it uses some low-level routines. In c1p(FD),
we can directly encode a boolean solver at the “user” level, thanks to the primitive
constraint, and decompose boolean constraints such as and, or, and not in X in r
expressions. In this way, we obtain a boolean solver that is obviously more efficient
than the encoding of booleans with arithmetic constraints (at a lower-lever), and
obviously more readable than the “wired” primitives of CHIP since the propagation
scheme is coded in a constraint language and not in C. Worth noticing is that this
boolean extension, called clp(B/FD), is very simple; the overall solver (coding of
boolean constraints into X in r expressions) being about ten lines long, the glass-
box is very clear indeed. Moreover, this solver is surprisingly very efficient, being on
average an order of magnitude faster than the CHIP solver, which was nonetheless
reckoned to be efficient. Remark in passing that this is one more argument for the
glass-box approach versus the black-box approach.

35

7.1. Boolean Solvers

Boolean problems have been tackled from a long time in various research areas,
e.g. theorem proving or hardware circuit verification, and many boolean solvers
have been developed, which are based on very different methods, such as SL-
resolution, Davis/Putman-like enumeration algorithms, BDD-based methods, Op-
erational Research-based approaches and more recently based on local propagation
schemes, see [12] or [14] for a general review. It is also worth distinguishing be-
tween stand-alone solvers intended to take a set of boolean formulas as input, and
CLP languages that offer much more flexibility by providing a full logic language to
state the problem and generate the boolean formulas. Only Prologlll, CHIP and
clp(B/FD) fall in the latter category.

As we will see later, clp(B/FD) is more efficient than CHIP and, surprizingly,
it is also more efficient (several times faster) than such special-purpose solvers (see
[12] or [14] for a comprehensive comparision).

7.2. Boolean Constraints

A boolean constraint on a set V of variables is one of the following formulas:
and(X,Y,Z), or(X,Y,Z), not(X,Y), X =Y, for X,Y,Z € V. The intuitive
meaning of these constraints is: X AY =2, XVvY =272 X=-Y,and X =Y.

Observe that it is easy to enhance, if desired, this constraint system by other
boolean constraints such as xor (exclusive or), nand (not and), nor (not or), <
(equivalence), or = (implication) by giving the corresponding rules, but they can
also be decomposed into the basic boolean constraints.

Therefore designing the boolean solver comes down to finding a user constraint
for each boolean constraint. As the constraint X in r makes it possible to use
arithmetic operations on the bounds of a domain, we use some mathematical rela-
tions satisfied by the boolean constraints:

and(X,Y,7Z) satisfies Z=X XY
Z<X<ZxY+1-Y
Z<Y<ZxX+1-X

or(X,Y,Z) satisfies Z=X4Y -XxY
Zx(1-Y)<X<Z
Zx(1-X)<Y<Z

not(X,Y) satisfies X =1-Y
Y=1-X
The definition of the solver is then quite obvious and presented in Table 1. It
simply encodes the above relations.
It is easy to prove that such and, or, and not user constraints are correct and
complete w.r.t. corresponding boolean operations by a simple case-analysis on
truth-tables.

7.3. Performance Evaluations

In order to test the performances of c1p(B/FD) we have tried a set of traditional
boolean benchmarks:

36

and(X,Y,Z):-

N

in min(X)*min(Y) . .max (X)*max(Y),
in min(Z) . .max(Z)*max(Y)+1-min(Y),
Y in min(Z)..max(Z)*max(X)+1-min(X).

<

or(X,Y,Z):- Z in min(X)+min(Y) -min(X)*min(Y)..
max (X) +max (Y) -max (X) *max (Y) ,
X in min(Z)*(1-max(Y))..max(Z),
Y in min(Z)*(1-max(X))..max(Z).

not (X,Y):- X in {1-val(Y)},
Y in {1-val(X)}.

Table 1. The boolean solver definition

e schur: Schur’s lemma. The problem consists of finding a 3-coloring of the
integers {1...n} such that there is no monochrome triplet (x,y,z) where
x4y = z. The formulation uses 3 x n variables to indicate, for each integer,
its color. This problem has a solution iff n < 13.

e pigeon: the pigeon-hole problem consists of putting n pigeons in m pigeon-
holes (at most 1 pigeon per hole). The boolean formulation uses n x m
variables to indicate, for each pigeon, its hole number. Obviously, there is a
solution iff n < m.

e queens: place n queens on a n X n chessboard such that there are no queens
threatening each other. The boolean formulation uses n x n variables to
indicate, for each square, if there is a queen on it.

e ramsey: find a 3-coloring of a complete graph with n vertices such that there
are no monochrome triangles. The formulation uses 3 variables per edge to
indicate its color. There is a solution iff n < 16.

Table 2 compares clp(B/FD) with the commercial version of CHIP (version 3.2)
using propagation-based boolean constraints °. The same programs were run for
both systems on a Sparc station 2. All solutions are computed unless if first is
stated.

The average speedup of clp(B/FD) w.r.t. CHIP is around a factor of eight, i.e.
an order of magnitude. This factor can be compared with the factor of four that we
have on the traditional FD benchmarks. The main reason for this difference could
be that in c1p(B/FD) booleans are encoded at a lower level, thanks to the X in r
primitive. Also a marginal gain can be attributed to the fact that the boolean
constraints benefit from the general optimizations for primitive constraints, but
this gain is limited to roughly 30 %.

Nevertheless, performances can be improved by simplifying the data-structures
used in c1p(FD), which are designed for full finite domain constraints, and special-
izing them for booleans by explicitly introducing a new type and new instructions

9the other solver of CHIP, based on boolean unification, quickly became unpracticable: none
of the benchmarks presented here could even run with it, due to memory limitations.

CHIP clp(B/FD) | speedup
Program 3.2 2.1 factor
schur 13 0.830 0.100 8.30
schur 14 0.880 0.100 8.80
schur 30 9.370 0.250 37.48
schur 100 200.160 1.174 170.49
pigeon 6/5 0.300 0.050 6.00
pigeon 6/6 1.800 0.360 5.00
pigeon 7/6 1.700 0.310 5.48
pigeon 7/7 13.450 2.660 5.05
pigeon 8/7 12.740 2.220 5.73
pigeon 8/8 117.800 24.240 4.85
queens 8 4.410 0.540 8.16
queens 9 16.660 2.140 7.78
queens 10 66.820 8.270 8.07
queens 14 first 6.280 0.870 7.21
queens 16 first 26.380 3.280 8.04
queens 18 first 90.230 10.470 8.61
queens 20 first 392.960 43.110 9.11
ramsey 12 first 1.370 0.190 7.21
ramsey 13 first 7.680 1.500 5.12
ramsey 14 first 33.180 2.420 13.71
ramsey 15 first 9381.430 701.106 13.38
ramsey 16 first | 31877.520 1822.220 17.49

Table 2. c1p(B/FD) vs. CHIP (in sec. on a Sparc 2)

37

38

for boolean variables. For instance, it is possible to reduce the variable frame rep-
resenting the domain of a variable and its associated constraints to only two words:
one pointing to the chain of constraints to awaken when the variable is bound to 0
and the other when it is bound to 1. Obviously time-stamps also become useless
for boolean variables. Such a specialized solver is about twice as fast as c1p(B/FD)
and is described in [14]. Observe however that this gain is not really drastic when
considering the level of encoding of the constraints: one expresses the propagation
scheme in a “high-level” constraint language (X in r expressions) while the other
requires the definiton of a new solver.

8. GENERALIZING THE CONSTRAINT X in r

8.1. Motivation

The X in r constraint gives us the possibility to define a range by functions over
ranges (e.g. intersection, union, etc.) and functions over terms (e.g. addition, sub-
traction, etc.). It is worth noting that the definition of this set of allowed functions
is mainly based on P. van Hentenryck’s (great) experience of finite domain con-
straints. However, it seems natural to generalize the syntax of X in r constraints
to allow any other functions over ranges or terms (see Table 1). Such functions are
called user functions and their arguments are either ranges or terms. In clp(FD),
user functions are written in C for reasons of efficiency and because the underlying
Prolog compiler already supports external functions in C. The following examples
show the expressive power of user functions.

8.2. Magic Series

The magic series problem consists of finding a sequence of integers {xq,...,Zp_1}
such that each z; is the number of occurrences of the integer ¢ in the series [44].
The original formulation [44] used a freeze on ecach X;. As presented in [34], we
would like to simply encode the following relation:

where (x = y) is 1 if x = y and 0 if # y. This comes down to defining a user
constraint x=a < b’ (X,A,B) where X is a domain variable, A a term parameter
and B a boolean variable. The semantics of this user constraint is: X = A iff B is
true (i.e. B =1). Operationally this constraint is active in two ways:

e assoon as X # A (resp. X = A) B is set to 0 (resp. 1),

e assoon as B = 0 the value A is removed from the domain of X (constraining
X to be different from A) and as soon as B =1 X is set to A.

Obviously, the most elegant way of defining such a constraint is to use the (con-
current) ask primitive to write the four propagation rules. However, even in a CLP
scheme we can define this constraint via two user functions as follows:

Ezample 8.1.

39

ci:= X inr

ru= t. .ty (interval)
{t} (singleton)
R (range parameter)
dom(Y") (indexical domain)
ot T (union)
r & ro (intersection)
-r (complementation)
r o+ ct (pointwise addition)
r - ct (pointwise subtraction)
r * ct (pointwise multiplication)
r/ ct (pointwise division)
frCat,...;ar) (user function)

ax= r|t (user function argument)
t:= min(Y) (indexical term min)
max (Y) (indexical term max)
ct (constant term)

ti+to | ti=ta | tixta | t1/<ty | t1/>t> (integer operations)
fiCay,...,ar) (user function)

ctn= C (term parameter)
n | infinity (greatest value)
cti+cto | cti1-cto | ct1*cto | ct1/<ctsy | ct1/>cts

Table 1. Syntax of the generalized constraint X in r

’x=a < b’ (X,A,B):- B in x_to_b(dom(X),A),
X in b_tox(val(B),A).

The user function x_to b returns 1 if X = A, 0 if X # A and 0..1 otherwise.
The user function b_to_x is triggered as soon as B is instantiated and yields A if
B =1 or else the range 0..00 \ A. Note that the propagation scheme used here is a
full-lookahead (any change of X or B involves the re-evaluation of this constraint).
Obviously, a partial lookahead could use specifying min(X) and max(X) instead
of dom(X).

To show the power of such a constraint, let us compare this definition with that
of CHIP which uses a freeze on each z;. clp(FD) starts at about 4 times as fast
as CHIP for small n and then grows up to a factor 460 (see Table 2). Obviously,
there is less pruning in the CHIP definition.

40

CHIP | c1lp(FD) | speedup
Program 3.2 2.1 factor

magic 10 ff 0.180 0.040 4.50
magic 20 ff 1.510 0.130 11.61
magic 30 ff 11.200 0.270 41.48
magic 40 ff 66.750 0.470 142.02
magic 50 ff || 334.870 0.720 465.09

Table 2. Magic series problem (in sec. on a Sparc 2)

8.3. Atmost

The symbolic constraint atmost (N, [X,...,X,,]1,V) holds iff at most IV variables
X, are equal to V. This constraint can be defined via the relation:

Jj=0

Here too, a boolean B; is associated to each variable z; and is set to 1 if z; =V
and to 0 if z; # V (via the constraint ’x=a < b’ defined above). The sum of
all Bi must be less than or equal to N. It is worth noticing that this constraint
is “wired” in CHIP when it is defined as a user constraint (i.e. declaratively) in
clp(FD) according to the glass-box paradigm.

More generally, it is possible to use a domain variable N to count the number
of constraints that are true (or false) and then to constrain N by some FD con-
straints. The most interesting possibilities of the cardinality operator [45, 46] are
then available in c1p(FD).

8.4. Non-Linear Equations

Usually non-linear equations are not supported directly by the solver since it is
possible to delay the resolution of X xY = Z until either X or Y is instantiated to
simply solve a linear equation. However, the only problem with X xY = Z is that
X should be updated at each modification of Y or Z by the evaluation of Z/Y and
thus we have to prevent the case Y = 0 (similarly for Z/X). Hence, it is possible
to deal with non-linear equations in both a more declarative and efficient manner
in executing X = Z/Y ouly if Y # 0. So, let us define the constraint X «Y = Z:

41

Ezample 8.2.

‘xy=z’(X,Y,Z):- X in div_e(min(Z) ,max(Y))..div_.d(max(Z) ,min(Y)),
Y in div_e(min(Z) ,max(X))..div_.d(max(Z) ,min(X)),
Z in min(X)*min(Y) . .max (X)*max(Y).

The function div_e(z,y) (resp. div_d(z,y)) returns & /ezcess ¥ (reSp. T /defauit)
if y # 0 and 0 (resp. co) otherwise.

The pruning performed is much greater than the pruning obtained by delaying
the evaluation until the equation is linear since Y # 0 is a weaker condition than
ground(Y'). For example let us consider the constraint X Y = 110 with the store:
{X in 1..40,Y in 6..30}. As neither X nor Y is instantiated the constraint is
delayed and thus the domains of X and Y are not reduced when the constraint
*xy=z’(X,Y,110) would reduce the domain of X to 5..11 and the domain of Y to
10..22. Finding all solutions to this equation would involve the labeling phase to
try 40 values for X with the delay version when only 7 would be tried with the
partial-lookahead constraint ’xy=z’(X,Y,Z).

To show a bit more the flexibility of the generalization of X in r, let us consider
the particular case X =Y (ie. X2 = Z). The constraint ’xy=z’(X,X,Z) with
the store {X in 1..100, Z in 5..24} reduces the domain of X to 1..24 and does
not modify the domain of Z. However, it is possible to improve this pruning since
X = V/Z. This is very similar to what occurs if the normalization step is not
performed for linear equations. Indeed, since the underlying arc-consistency gives
rise to approximations for domains, if all occurrences of a same variable X are
handled separately each of them gives rise to an approximation for the domain of
X. The result is a large approximation A that encompasses all sub-approximations.
On the other hand, if all occurrences are “regrouped” (in a mathematical sense)
then only one approximation is generated which is more accurate than A. Then,
we define the user constraint X2 = Z as follows:

Ezample 8.5.

’xx=z’ (X,Z) :- X in sqrt_e(min(Z))..sqrt_d(max(2)),
Z in min(X)*min(X) . .max (X)*max (X) .

the function sqrt_e(x) (resp. sqrt-d(z)) returns the integer square root of x
rounded by excess (resp. default). In this case the constraint ’xx=z’(X,Y) with
the store {X in 1..100, Z in 5..24} reduces the domain of X to 3..4 and the
domain of Z to 9..16.

9. CONCLUSION AND PERSPECTIVES

We have presented an abstract instruction set for a constraint solver over finite
domains, which can be smoothly integrated into the WAM architecture. It is based
on the idea of [46] of using a single primitive constraint X in r that embeds the
core propagation mechanism, while complex constraints are compiled into X in r
expressions.

42

Implementation results show that this approach is sound, combining as it does
both simplicity and efficiency. Our clp(FD) system is about four times faster
than CHIP on average, with peak speedup reaching eight. We have also shown
that, following the glass-box approach, c1p(FD) can be naturally enriched with
various new constraints such as constructive disjunction, boolean constraints, non-
linear constraints and symbolic constraints by using X in r decompositions. The
boolean solver, for instance, performs fairly well, being eight times faster than
the CHIP propagation-based solver and infinitely better than the CHIP boolean
unification on usual boolean benchmarks [12].

Future work will involve integrating more complex constraints such as cardinality,
full constructive disjunction, and a simple intelligent backtracking scheme on FD
constraints [10].

Perspectives also include moving to the concurrent constraint framework [40]
by defining a simple and efficient ask mechanism, and extending the constraint
solver for incremental solving in reactive systems, i.e. for an intelligent handling of
addition or deletion of constraints “from the outside” with minimal recomputation.

10. HOW TO GET cl1p(FD)

The clp(FD) system is available by anonymous ftp at ftp.inria.fr in the di-
rectory /INRIA/Projects/ChLoE/LOGIC_PROGRAMMING/clp_fd. The standard dis-
tribution also includes the boolean solver presented above and the sources of all
benchmarks used in this paper.

ACKNOWLEDGEMENTS

We would like to thank Pascal Van Hentenryck for the initial idea of the glass-box
and his helpful answers to our questions. We also thank Bjorn Carlsson, Mats
Carlsson and Gregory Sidebottom for many fruitful discussions.

REFERENCES

1. A. Aggoun and N. Beldiceanu. Time Stamps Techniques for the Trailed Data in
CLP Systems. In Actes du Séminaire 1990 - Programmation en Logique, Tregastel,
France, CNET 1990.

2. A. Aggoun and N. Beldiceanu. Overview of the CHIP Compiler System. In 8th
International Conference of Logic Programming, Paris, France, MIT Press, 1991.

Also in Constraint Logic Programming: Selected Research, A. Colmerauer and F.
Benhamou (Eds.). MIT Press, 1993.

3. H. Ait-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction. Logic Pro-
gramming Series, MIT Press, 1991.

4. BNR-Prolog User’s Manual. Bell Northern Research. Ottawa, Canada, 1988.

5. A. Bockmayr. Logic Programming with Pseudo-Boolean Constraints. Research
report MPI-1-91-227, Max Planck Institut, Saarbrucken, Germany, 1991.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

43

R.E. Bryant, Graph Based Algorithms for Boolean Function Manipulation. IEEFE
Transactions on computers, no. 35 (8), 1986, pp 677—691.

W. Biittner and H. Simonis. Embedding Boolean Expressions into Logic Program-
ming. Journal of Symbolic Computation, no. 4 (1987), pp 191-205.

B. Carlsson, M. Carlsson. Constraint Solving and Entailment Algorithms for
cc(FD). Research Report, SICS, Sweden, 1993.

B. Carlsson, M. Carlsson, D. Diaz Entailment of Finite Domain Constraints. In
11th International Conference on Logic Programming, Santa Margherita, Italy,
MIT Press, 1994.

P. Codognet, F. Fages and T. Sola. A metalevel compiler for CLP(FD) and its com-
bination with intelligent backtracking. In Constraint Logic Programming: Selected
Research, A. Colmerauer and F. Benhamou (Eds.). MIT Press, 1993.

P. Codognet and D. Diaz. A Minimal Extension of the WAM for c1p(FD). In 10th
International Conference on Logic Programming, Budapest, Hungary, MIT Press,
1993.

P. Codognet and D. Diaz. Boolean Constraint Solving Using clp(FD). In Inter-
national Logic Programming Symposium, Vancouver, British Columbia, Canada,
MIT Press, 1993.

P. Codognet and D. Diaz. c1p(B): Combining Simplicity and Efficiency in Boolean
Constraint Solving. In Programming Language Implementation and Logic Program-
ming Madrid, Spain, Springer-Verlag, 1994.

P. Codognet and D. Diaz. A Simple and Efficient Boolean Solver for Constraint
Logic Programming. To appear in Journal of Automated Reasoning.

D. Chemla, D. Diaz, P. Kerlirzin and S. Manchon. Using clp(FD) to Support
Air Traffic Flow Management. In International Logic Programming Symposium
Post-Conference Workshop on Constraint Languages/Systems and Their Use in
Problem Modelling, Ithaca, New-York, P. Lim and J. Jourdan (Eds.), 1994.

P. Codognet and D. Diaz. wamcc: Compiling Prolog to C. In 12th International
Conference on Logic Programming, Tokyo, Japan, MIT Press, 1995.

A. Colmerauer. An introduction to Prolog-III. communications of the ACM, 33
(7), July 1990.

Vitor Santos Costa, D. H. D. Warren, and Rong Yang. The Andorra-I engine: A
parallel implementation of the basic andorra model. In 8th International Confer-
ence of Logic Programming, Paris, France, MIT Press, 1991.

D. Diaz. FEtude de la compilation des langages logiques de programmation par
contraintes sur les domaines finis : le systéme clp(FD). PhD thesis, University of
Orleans, France, January 1995.

M. Dincbas, H. Simonis and P. Van Hentenryck. Solving the Car-Sequencing Prob-
lem in Constraint Logic Programming. In FCAI-88, Munich, W. Germany, August
1988.

M. Dincbas, H. Simonis and P. Van Hentenryck. Solving large combinatorial prob-
lems in Logic Programming. Journal of Logic Programming, 8 (1,2), 1990.

44

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

G. Dore and P. Codognet. A Prototype Compiler for Prolog with Boolean Con-
straints. In GULP’93, Italian Conference on Logic Programming, Gizzeria Lido,
Ttaly, 1993.

G. Gallo, G. Urbani, Algorithms for Testing the Satisfiability of Propositional
Formulae. Journal of Logic Programming, no. 7 (1989), pp 45-61.

R. M. Haralick and G. L. Elliot. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence 14 (1980), pp 263-313

S. Haridi and S. Janson. Kernel Andorra Prolog and its computation model. In
7th International Conference of Logic Programming, Jerusalem, Israel, MIT Press,
1990.

J. Jaffar and J-L. Lassez. Constraint Logic Programming. In Principles Of Pro-
gramming Languages, Munich, Germany, January 1987.

J. Jaffar and S. Michaylov. A Methodology for Managing Hard Constraints in CLP
Systems. In proceedings of Sigplan PLDI, Toronto, Canada, ACM Press 1991.

J. Jaffar, S. Michaylov, P. J. Stuckey and R. Yap. An Abstract Machine for
CLP(R). In proceedings of Sigplan PLDI, San Francisco, USA, ACM Press 1992.

J. Jourdan and T. Sola. The Versatility of Handling Disjunctions as Constraints
In Programming Language Implementation and Logic Programming, Talin, Estonia,
1993.

A. K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence 8
(1977), pp 99-118.

U. Martin, T. Nipkow, Boolean Unification — The story so far. Journal of Symbolic
Computation, no. 7 (1989), pp 191-205.

J-L. Massat. Using Local Consistency Techniques to Solve Boolean Constraints.
In Constraint Logic Programming: Selected Research, A. Colmerauer and F. Ben-
hamou (Eds.). MIT Press, 1993.

B. A. Nadel. Constraint Satisfaction Algorithms. Computational Intelligence 5
(1989), pp 188-224.

W.J. Older, F. Benhamou Programming in clp(BNR). In position Papers of 1st
PPCP, Newport, Rhode Island, 1993.

L. M. Pereira and A. Porto. Intelligent backtracking and sidetracking in horn clause
programs. Technical Report CIUNL 2/79, Universitade Nova de Lisboa, 1979.

A. Rauzy. L’Evaluation Sémantique en Calcul Propositionnel. PhD thesis, Univer-
sity of Aix-Marseille II, Marseille, France, January 1989.

A. Rauzy. Adia. Technical report, LaBRI, Université Bordeaux I, 1991.

A. Rauzy. Using Enumerative Methods for Boolean Unification. In Constraint
Logic Programming: Selected Research, A. Colmerauer and F. Benhamou (Eds.).
MIT Press, 1993.

A. Rauzy. Some Practical Results on the SAT Problem. Draft, 1993.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

45

V.A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Re-
search Report CMU-CS-89-108, Carnegie-Mellon University, 1989. Also (revised)
MIT Press, 1993.

V. Saraswat. The Category of Constraint Systems is Cartesian-Closed. In Logic
In Computer Science, IEEE Press 1992.

D. S. Scott. Domains for Denotational Semantics. In ICALP’82, International
Colloquium on Automata Languages and Programming, 1982.

H. Simonis, M. Dincbas. Propositional Calculus Problems in CHIP. ECRC, Tech-
nical Report TR-LP-48, 1990.

P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-
gramming Series, The MIT Press, 1989.

P. Van Hentenryck and Y. Deville. The Cardinality Operator: A new Logical
Connective for Constraint Logic Programming. In 8th International Conference of
Logic Programming, Paris, France, MIT Press, 1991.

P. Van Hentenryck, V. Saraswat and Y. Deville. Constraint processing in cc(FD).
Draft, 1991.

P. Van Hentenryck, V. Saraswat and Y. Deville. Design, Implementation and
Evaluation of the Constraint language cc(FD). Draft, 1993.

P. Van Hentenryck, Y. Deville and C-M. Teng. A generic arc-consistency algorithm
and its specializations. Artificial Intelligence 57 (1992), pp 291-321.

P. Van Hentenryck, H. Simonis and M. Dincbas. Constraint Satisfaction Using
Constraint Logic Programming. Artificial Intelligence no 58, pp 113-159, 1992.

D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, SRI
International, Oct. 1983.

D. H. D. Warren. The Andorra Principle. Internal Report, Gigalips Group, 1987.

A. INSTRUCTION SET

A.1. Interfacing with Prolog Clause

These instructions are responsible for creating and loading the A_Frame. Mainly,
the space is reserved at the top of the heap, the addresses of FD variables and
values of parameters are loaded into this new A_Frame.

fd_set_AF(nb_arg,Vi) reserves space, on the top of the heap, for an A _Frame

whose size is nb_arg. AF and the Vi variable point to the start of the
A _Frame.

fd_variable_in A frame(Vj) binds Vj to an FD variable created on top of the

heap (whose range is 0..00). Puts its address into the cell pointed by AF. AF
is incremented.

fd value_in A frame(Vj) let w be the dereferenced word of Vj, if it is:

e an unbound variable: similar to fd_variable_in_A_frame (w).

46

e an integer: it is pushed on the heap and its address is stored into the
cell pointed by AF. AF is incremented.

e an FD variable: its address is stored into the cell pointed by AF. AF is
incremented.

fd_range parameter_in A_frame(Vj) the dereference of Vj must be a list of in-
tegers and a corresponding range is created on the top of the heap whose
address is copied into the cell pointed by AF. AF is incremented.

fd_term parameter_in A frame(Vj) the dereference of Vj must be an integer and
its value is copied into the cell pointed by AF. AF is incremented.

Then, for every constraint, the following instructions are produced:

fd_install_constraint (install_proc,Vi) restores AF with Vi, sets CC to the
next instruction and gives the control to the install procedure (described in
the following section).

fd_call constraint sets CC to the next instruction and gives the control to the
code of the constraint pointed by CF.

A.2. Installing Constraints

For every constraint, an installation procedure is generated. It is responsible for
creating and loading the C_Frame. It also initializes the appropriate chain lists for
all FD variables used by this constraint.

fd_create_C_frame(constraint_proc,tell_fv) creates on the heap a C_Frame
associated to the constraint whose code is located at constraint_proc and
whose constrained variable is tell_fv. CF points to this C_Frame.
ind min
ind_max
fd_install_¢{ indminmax ,(fv)
ind_dom
dly_val
These instructions are used when the constraint (currently pointed by CF)
uses the min (or max, or both min and max, etc.) of the fvth variable. So
a new element is added to the appropriate chain list of the fvth variable.

fd_proceed gives the control to the address pointed by CC.

A.3. Computing Constraints

For every constraint X in 7 a constraint procedure is generated which is decom-
posed into four parts:

e loading parameters, indexical terms and ranges into appropriate registers,
e computing the range r,
e telling the constraint X in r,

e returning (by fd_proceed as above).

47

A.8.1. Loading parameters, indexical terms and ranges

fd_range _parameter (R(r),fp) loads the range pointed by the fpth parameter
into R(r).

fd_term parameter(T(t),fp) loads the value of the fpth parameter into T(t).

min

}(T(t) ,fv) loads the {
max

min

fdind{ } of the fvth variable into T(t).
max

fd_ind min max(T(t1) ,T(t2),fv) loads the min and the max of the fvth vari-
able in T(t1) and T(t2).

fd_ind dom(R(r),fv) loads the domain (a range) of the fvth variable into R(x).

fd dly val(T(t),fv,lab_else) if the fvth variable is an integer, it is copied in
T(t), or else the control is given to the label 1ab_else.

A.8.2. Computing the Range.

fd_interval_range(R(r) ,T(t1),T(t2)) executes R(r)«T(t1)..T(t2).

fd{ union }(R(r),R(rl)) executesR(r)<—R(r){ ﬁ }R(rl).

inter
fd_compl(R(r)) executes R(r)« 0..00 \ R(x).

fd_compl of singleton(R(r),T(t)) executes R(r)«0..00\ {T[t]}.

add +pointwise
b .
fd.{ "2\ in range(R(r),T(t)) executes R(r)«R(r){ Pomtwise Lr(g).
mul *pointwise
div /pointwise

fd_range_copy(R(r) ,R(r1)) executes R(r)«R(rl).

fd_integer(T(t),n) executes T(t)+«n.

add +
sub —
fd_ mul (T(t),T(t1)) executes T(t)«T(t) * T(t1).
floor_div /]
ceil div [/]

fd_term_copy(T(t),T(t1) executes T(t)«T(t1l).

Telling the constraint X in r. The current constraint is pointed by CF and
X can be reached from the C_Frame. So only r must be provided to tell. In order
to optimize the execution we distinguish the case X in t;..to and the case X in r
(with any 7). A complete description of the tell operation is given in Section 4.4.

fd_tell range(R(r)) tells X in r where r is a range.

fd tell interval(T(t1),T(t2)) tells X in t1..t2 (i.e. r is an interval).

