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Abstract

We study in this paper the use of consistency techniques and local propagation meth-
ods, originally developped for constraints over finite domains, for solving boolean
constraints in Constraint Logic Programming (CLP). We present a boolean CLP
language clp(B/FD) built upon a CLP language over finite domains clp(FD) which
uses a propagation-based constraint solver. It is based on a single primitive con-
straint which allows the boolean solver to be encoded at a low-level. The boolean
solver obtained in this way is both very simple and very efficient: on average it
is eight times faster than the CHIP propagation-based boolean solver, i.e. nearly
an order of magnitude faster, and infinitely better than the CHIP boolean unifica-
tion solver. It also performs on average several times faster than special-purpose
stand-alone boolean solvers. We further present several simplifications of the above
approach, leading to the design of a very simple and compact dedicated boolean
solver. This solver can be implemented in a WAM-based logical engine with a
minimal extension limited to four new abstract instructions. This clp(B) system
provides a further factor two speedup w.r.t. clp(B/FD).

1 Introduction

Constraint Logic Programming combines both the declarativity of Logic Program-
ming and the ability to reason and compute with partial information (constraints)
on specific domains, thus opening up a wide range of applications. Among the usual
domains found in CLP, the most widely investigated are certainly finite domains,
real/rationals with arithmetic constraints, and booleans. This is exemplified by
the three main CLP languages: CHIP [31], which proposes finite domains, ratio-
nal and booleans, PrologIII [11] which includes rationals, booleans and lists, and
CLP(R) [18] which handles contraints over reals. Whereas most researchers agree
on the basic algorithms used in the constraint solvers for reals/rationals (simplex
and gaussian elimination) and finite domains (local propagation and consistency
techniques), there are many different approaches proposed for boolean constraint
solving. Some of these solvers provide special-purpose boolean solvers while others
have been integrated inside a CLP framework. However, different algorithms have
different performances, and it is hard to know if, for some particular application,
any specific solver will be able to solve it in practise. Obviously, the well-known
NP-completeness of the satisfiability of boolean formulas shows that we are tackling
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a difficult problem here.
Over recent years, local propagation methods, developed in the CHIP language for
finite domain constraints [31], have gained a great success for many applications,
including real-life industrial problems. They stem from consistency techniques in-
troduced in AI for Constraint Satisfaction Problems (CSP) [19]. Such techniques
have also been used in CHIP to solve boolean constraints with some success; in
fact to such an extent that it has become the standard tool in the commercial ver-
sion of CHIP. This method performs better than the original boolean unification
algorithm for nearly all problems and is competitive with special-purpose boolean
solvers. Thus, the basic idea is that an efficient boolean solver can be derived from
a finite domain constraint solver for free.
It was therefore quite natural to investigate such a possiblity with our CLP system
clp(FD), which handles finite domains constraints similar to that of CHIP, but
being nevertheless about four times faster on average [13, 10]. clp(FD) is based
on the so-called “glass-box” approach proposed by [32], as opposed to the “black-
box” approach of the CHIP solver for instance. The basic idea is to have a single
constraint X in r, where r denotes a range (e.g. t1..t2). More complex constraints
such as linear equations and inequations are then defined in terms of this primitive
constraint. The X in r constraint can be seen as embedding the core propagation
mechanism for constraint solving over finite domains, and can be seen as an abstract
machine for propagation-based constraint solving.
We can therefore directly encode a boolean solver at a low-level with this basic
mechanism, and decompose boolean constraints such as and, or, and not in X in r
expressions. In this way, we obtain a boolean solver which is obviously more efficient
than the encoding of booleans with arithmetic constraints or with the less adequate
primitives of CHIP. Worth noticing is that this boolean extension, called clp(B/FD),
is very simple; the overall solver (coding of boolean constraints in X in r expression)
being about ten lines long, the glass-box is very clear indeed... Moreover, this
solver is surprisingly very efficient, being eight times faster on average than the
CHIP solver (reckoned to be efficient), with peak speedup reaching two orders of
magnitude in some cases. clp(B/FD) is also more efficient than special purpose
solvers, such as solvers based on Binary Decision Diagrams (BDDs), enumerative
methods or schemes using techniques borrowed from Operational Research. This
architecture also has several other advantages, as follows. First, being integrated
in a full CLP language, heuristics can be added in the program itself, as opposed
to a closed boolean solver with (a finite set of) built-in heuristics. Second, being
integrated in a finite domain solver, various extensions such as pseudo-booleans [6]
or multi-valued logics [33] can be integrated straightforwardly. Third, being based
on a propagation method, searching for a single solution can be done much more
quickly if the computation of all solutions is not needed.
Nevertheless, performances can be improved by simplifying the data-structures used
in clp(FD), which are indeed designed for full finite domain constraints. They can
be specialized by introducing explicitly a new type and new instructions for boolean
variables. It is possible, for instance, to reduce the data-structure representing the
domain of a variable and its associated constraints to only two words: one pointing
to the chain of constraints to awake when the variable is bound to 0 and the other
when it is bound to 1. Also some other data-structures become useless for boolean
variables, and can be simplified. Such a solver is very compact and simple; it is
based again on the glass-box approach, and uses only a single low-level constraint,
more specialized than the X in r construct, into which boolean constraints such
as and, or or not are decomposed. This primitive constraint can be implemented
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into a WAM-based logical engine with a minimal extension : only four new abstract
instructions are needed. This dedicated solver, called clp(B), provides a further
factor two speedup w.r.t. clp(B/FD).

The rest of this paper is organized as follows. Section 2 reviews the variety of
methods already proposed for solving boolean constraints and presents in particular
the use of local propagation and consistency techniques. Section 3 introduces the
formalization of the semantics of propagation-based boolean solvers as a particular
constraint system. Section 4 then proposes a first implementation on top of the
clp(FD) system by using the X in r primitive constraint for decomposing boolean
constraints. The performances of this system, called clp(B/FD), are evaluated
in section 5, and compared both with the CHIP system and with several other
efficient dedicated boolean solvers. In section 6, a number of simplifications of the
previous approach are proposed, leading to the design of a very simple and compact
specialized boolean solver, called clp(B), performances of which are detailed in
section 7. A short conclusion and research perspectives end the paper.

2 A review of Boolean solvers

Although the problem of satisfiability of a set of boolean formulas is quite old,
designing efficient methods is still an active area of research, and there has been
a variety of methods proposed over recent years toward this aim. Moreover, it is
usually important not only to test for satisfiability but also to actually compute the
models (assignments of variables), if any. To do so, several types of methods have
been developed, based on very different data-structures and algorithms. Focusing on
implemented systems, existing boolean solvers can be roughly classified as follows.

2.1 Resolution-based methods

The resolution method, which has been proposed for full first-order logic, can obvi-
ously be specialized for propositional logic and therefore be used for solving boolean
problems. Such a method is based on clausal representation for boolean formulas,
each literal representing a boolean variable, i.e. conjunctive normal form. The core
of the method will consist in trying to apply resolution steps between clauses con-
taining occurences of the same variable with opposite signs until either the empty
clause (inconsistency) is derived, or some desired consequence of the original formu-
las is derived. SL-resolution is for instance used for solving boolean constraints in
the current version of the Prolog-III language [11] [2]. However, the performances
of this solver are very poor and limit its use to small problems. Many refinements
have been proposed for limiting the potentially huge search space that have to be
explored in resolution-based methods, see [24] for a detailed discussion and further
references. Another improved resolution-based algorithm, using a relaxation proce-
dure, is described in [15]. However, there does not seem to be any general solution
which can improve efficiency for a large class of problems.

2.2 BDD-based methods

Binary Decision Diagrams (BDD) have recently gained great success as an efficient
way to encode boolean functions [7], and it was natural to try to use them in boolean
solvers. The basic idea of BDDs is to have a compact representation of the Shanon
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normal form of a boolean formula. A formula is in normal form if it is reduced to
a constant (0 or 1), or an expression of the form ite(x, F,G), meaning “if x then
F else G”, where F and G are in normal form. An if-then-else expression of the
form ite(x, F,G) represents the formula (x ∧ F ) ∨ (¬x ∧ G). An efficient way to
encode and manipulate this normal form is to use a reduced and ordered binary
decision diagram, which is represented as a directed binary acyclic graph whose
interior nodes are labeled by variables and leaves by constants 0 and 1. An interior
node x with two sons F and G represents an ite expression ite(x, F,G). Assuming a
total order on the set of boolean variables, it is possible to construct for any boolean
formula a BDD that respects this ordering (i.e. x < y iff there is a path from x to
y) such that common subexpressions are merged. It is possible to achieve in this
way a unique normal form. For example, let us consider the formula F = (x∧y)∨z
and the ordering x < y < z. The corresponding BDD is depicted in figure 1.

X

Y

Z

1 0

Figure 1: BDD encoding for (x ∧ y) ∨ z

The size and the form of the BDD are very dependent on the ordering of variables
chosen, as a good order will amount to many common subexpressions to be merged
while a bad one to none. Therefore, the number of nodes of the BDD can be,
depending on the ordering, from linear to exponential w.r.t. the initial number of
variables.
Nevertheless, BDD have been used as basic encoding for formulas in many solvers.
For instance, the boolean unification [20] solver of CHIP uses such a BDD rep-
resentation [8] [30]. Other solvers using BDDs include the Adia solver [25], its
improved version (second method of [27]) and the Wamcc-Adia combination [14].
The Wamcc-Adia system consists of an integration of a BDD-based boolean solver
into a Prolog compiler based on the WAM (Warren Abstract Machine), at the ab-
stract intruction level. It performs about four times faster than CHIP’s boolean
unification [14]. Such solvers are efficient for some circuit verification applications,
but do not have as good results for less symmetrical problems, e.g. traditional
boolean benchmarks, for the size of the BDD during the computation can become
very large. It is also very costly to maintain a normal form (the BDD) and to
recompute it each time a new constraint is added. Moreover, performances are very
dependent of the ordering chosen, and it is not really possible to include in CLP lan-
guages complex ordering heuristics, because of the incremental construction of the
BDD during program execution. Moreover, these solvers are unable to selectively
compute, if desired, a single solution instead of all possible ones.
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2.3 Enumerative methods

These methods roughly consist in trying possible assignments by incrementally in-
stanciating variables to 0 or 1 and checking consistency in various sophisticated
ways. The seminal algorithm by Davis and Putman falls into this category, although
it can also be reformulated in the previous resolution framework. The basic idea
is to build, either implicitly or explicitly, a decision tree by instanciating variables
and backtracking. Boolean constraints are checked for consistency in sophisticated
ways as soon as all their variables become ground. [24] and [21] contain various im-
provements in consistency checking, and [26] shows how to compute most general
unifiers representing all possible models. New methods use a matrix-based clausal
form to represent constraints for efficiency reasons, either by bit-vector encoding
[21] or with a spare-matrix representation (first method of [27]). They also allow
fixed variables to be detected quickly. These solvers can be made quite efficient by
introducing various heuristics.

2.4 0-1 integer programming

A very different method was recently proposed, consisting in encoding constraint
satisfaction problems, and in particular boolean problems, as sets of linear inequa-
tions over integers such that the satisfiability of the initial problem reduces to an
optimisation problem for the solution of the derived set of inequations [17]. Estab-
lished methods from Operational Research, and in particular branch-and-cut meth-
ods for 0-1 programming can then be used to perform this computation. The idea
is to start from the clausal representation of the boolean problem and to translate
each clause in a straightforward way. For instance clauses such as x1∨¬x2∨x3∨¬x4

will be translated into the linear inequation x1 + (1− x2) + x3 + (1− x4) ≥ 1, that
is, x1 − x2 + x3 − x4 ≥ −1. Then, roughly, a solution will be found (or inconsis-
tency discovered) by deriving new inequations with some variables projected out
by performing Chvatal’s cut (linear combinations of inequations), in a way indeed
quite similar to resolution. A related method is presented in [3, 4], where various
heuristics can be used in the choice of the next variable to be eliminated, encoded in
an objective function which will guide the search towards an optimal solution. The
method will therefore consist in generating a sequence of vectors X1, ..., Xk such
that Xk has its elements in {0,1} and is an optimal solution (satisfying the initial
constraints).
Such a method can perform quite efficiently, especially for big problems, and is more
suited to find one solution than all possible solutions.

2.5 Propagation-based methods.

These schemes are based on local propagation techniques developed for finite do-
main constraints. Such techniques stem from Constraint Satisfaction Problems
[19, 22, 23] and have been introduced in Constraint Logic Programming by the
CHIP language [31]. Very close to those methods are the interval arithmetic con-
straints of BNR-Prolog [5]. The basic idea is to manage a network of constraints
between a set of variables which can take values in some finite domains by en-
suring local consistency propagation through the constraints linking the variables.
Constraint Logic Programming usually only implements, for efficiency reasons, arc-
consistency, i.e. propagation of unary constraints (domains of variables), rather
than full path-consistency, i.e. propagation of binary constraints, or more general
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full k-consistency, i.e. constraints involving k variables. Also a popular technique is
to enforce a relaxed, or partial, form of k-consistency (also called partial lookahead
[16]), which consists in considering and propagating through the constraint network
not the full domains of variables but only some approximations of domains, such
as the minimal and maximal values. The efficiency of this scheme have been as-
sessed for handling linear equations and inequation in numerical problems, see [31]
or [10]. Thus some constraints can be consistent with the approximations of current
domains of variables but not completely satisfied and should be reconsidered when
the domains of the variables they involve are further reduced. Therefore the con-
straint popagation phase is followed by a so-called labeling phase where variables
not yet fixed are incrementally instanciated to some value in their domains (which
has usually been reduced in the previous phase). Various heuristics can be incor-
porated in this labeling phase in order to choose the next variable to instanciate.
An instanciation can lead to the (re)activation of some constraints that are not
completely satisfied, possibly reducing the domains of other variables. This process
continues until some solution is found, i.e. until no suspended constraint needs to
be reconsidered anymore. Such techniques are called local consistency because they
do not ensure global consistency in general, although for instance arc-consistency
is complete for some subsets of binary constraints and n-consistency will obviously
ensure global consistency of a system of n variables. Note that global consistency
means that the problem is solved. Methods based on finite domain propagation
techniques are very close in spirit to enumerative methods (especially [21]), but
do not use a particular encoding of boolean constraints, and rather reuse a more
general module designed for finite domain constraints. Such a boolean solver is
integrated in CHIP and performs usually far better than its boolean unification
algorithm, being close to specifically developed solvers. clp(B/FD) is another in-
stance of such an approach, as it is based on the clp(FD) solver for finite domain
constraints, as is clp(B), which is used on a specialized low-level constraint based
on local propagation.

2.6 CLP versus dedicated solvers

It is also worth distinguishing in the above classification between special-purpose
boolean solvers, which are intended to take a set of boolean formulas as input, and
solvers integrated in CLP languages, which offer much more flexibility by provid-
ing a full logic language to state the problem and generate the boolean formulas.
PrologIII, CHIP, clp(B/FD) and clp(B) fall into the latter category.
The advantages of being integrated in a full CLP language are as follows. First, the
underlying logic language can be used as a metalanguage for stating the boolean
constraints, instead of giving an explicit boolean formulations, e.g. a clausal form,
which is in general quite complex and rather unreadable. Second, heuristics can be
added in the program itself, as opposed to a closed boolean solver with (a finite set
of) built-in heuristics. Finally, being fully integrated in a finite domain solver, as
in clp(B/FD), make it possible for various extensions such as pseudo-booleans [6]
or multi-valued logics [33]. Pseudo-boolean constraints are very important because
they usually lead to a simpler formulation and because they can provide a much
better pruning.
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3 Formalizing propagation-based solvers

Let us now detail the formalization of boolean expressions in terms of constraint
systems. In this way, we give an operational semantics to the propagation-based
boolean solver and prove its equivalence with respect to the declarative semantics
of boolean expressions (truth-tables).

3.1 Constraint Systems

The simplest way to define constraints is to consider them as first-order formu-
las interpreted in some non-Herbrand structure [18], in order to take into account
the particular semantics of the constraint system. Such declarative semantics is
adequate when a non-Herbrand structure exists beforehand and suitably fits the
constraint system (e.g. R for arithmetic constraints), but does not work very well
for more practical constraint systems (e.g. finite domains). Obviously, it cannot ad-
dress any operational issues related to the constraint solver itself. Recently, another
formalization has been proposed by [28], which can be seen as a first-order general-
ization of Scott’s information sytems [29]. The emphasis is put on the definition of
an entailment relation (noted `) between constraints, which suffices to define the
overall constraint system. Such an approach is of prime importance in the frame-
work of concurrent constraint languages, but is also useful for pure CLP, as it makes
it possible to define a constraint system ex nihilo by giving the entailment relation
and verifying some basic properties. The entailment relation is given by rules, and
we can therefore define a kind of operational semantics of the entailment between
constraints. This will be particularly useful when defining our propagation-based
boolean constraint system, as the entailment relation will accurately represent how
information is propagated between constraints.

Definition [28]
A constraint system is a pair (D,`) satisfying the following conditions:

1. D is a set of first-order formulas closed under conjunction and existential
quantification.

2. ` is an entailment relation between a finite set of formulas and a single formula
satisfying the following inference rules:

Γ, d ` d (Struct)
Γ1 ` d Γ2, d ` e

Γ1,Γ2 ` e
(Cut)

Γ, d, e ` f

Γ, d ∧ e ` f
(∧ `)

Γ ` d Γ ` e

Γ ` d ∧ e
(` ∧)

Γ, d ` e

Γ,∃X. d ` e
(∃ `)

Γ ` d[t/X]
Γ ` ∃X. d

(` ∃)

In (∃ `), X is assumed not free in Γ, e.

3. ` is generic: that is Γ[t/X] ` d[t/X] whenever Γ ` d, for any term t.

In order to build constraint systems, it suffices to define a pre-constraint system
(D,`) satisfying only (Struct), (Cut) and the genericity condition. Existential
quantification and conjunction can be added in a straightforward way, as stated by
the following theorem.
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Theorem [28]
Let (D′,`′) be a pre-constraint system. Let D be the closure of D′ under existential
quantification and conjunction, and ` the closure of `′ under the basic inference
rules. Then (D,`) is a constraint system.

As an important corollary, a constraint system can be constructed even more simply
from any first-order theory, i.e. any set of first-order formulas. Consider a theory T
and take for D the closure of the subset of formulas in the vocabulary of T under
existential quantification and conjunction. Then one defines the entailment relation
`T as follows. Γ `T d iff Γ entails d in the logic, with the extra non-logical axioms
of T .
Then (D,`T ) can be easily verified to be a constraint system.
Observe that this definition of constraint systems thus naturally encompasses the
traditional view of constraints as interpreted formulas.

3.2 Boolean constraints

Definition
Let V be an enumerable set of variables. A boolean constraint on V is one of the
following formulas:

and(X, Y, Z) , or(X, Y, Z) , not(X, Y ) , X = Y , for X, Y, Z ∈ V ∪ {0, 1}

The intuitive meaning of these constraints is: X ∧ Y ≡ Z, X ∨ Y ≡ Z, X ≡ ¬Y ,
and X ≡ Y . We note B the set of all such boolean constraints.

Let us now present the rules defining the propagation between boolean constraints.

Definition
Let B be the first-order theory on B -formulas presented in table 1:

0=0 1=1

and(X,Y,Z), X=0 → Z=0 and(X,Y,Z), Y=0 → Z=0
and(X,Y,Z), X=1 → Z=Y and(X,Y,Z), Y=1 → Z=X
and(X,Y,Z), Z=1 → X=1 and(X,Y,Z), Z=1 → Y=1

or(X,Y,Z), X=1 → Z=1 or(X,Y,Z), Y=1 → Z=1
or(X,Y,Z), X=0 → Z=Y or(X,Y,Z), Y=0 → Z=X
or(X,Y,Z), Z=0 → X=0 or(X,Y,Z), Z=0 → Y=0

not(X,Y), X=0 → Y=1 not(X,Y), X=1 → Y=0
not(X,Y), Y=0 → X=1 not(X,Y), Y=1 → X=0

Table 1: Boolean propagation theory B

Note that it is easy to enrich, if desired, this constraint system by other boolean
constraints such as xor (exclusive or), nand (not and), nor (not or), ⇔ (equiva-
lence), or ⇒ (implication) by giving the corresponding rules, but they can also be
decomposed into the basic constraints.
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We can now define the entailment relation `B between boolean constraints and the
boolean constraint system:

Definitions
Consider a store Γ and a boolean constraint b.

Γ `B b iff Γ entails b with the extra axioms of B.

The boolean constraint system is (B ,`B).

It is worth noticing that the rules of B (and thus `B) precisely encode the propa-
gation mechanisms that will be used to solve boolean constraints. We have indeed
given the operational semantics of the constraint solver in this way.

3.3 Correctness and completeness of (B ,`B)

It is important to ensure that our (operationally-defined) constraint system is equiv-
alent to traditional boolean expressions. To do so, we have to prove that our en-
tailment relation derives the same results as the declarative semantics of booleans
given by the truth-tables of the and, or and not operators.

Theorem
The and(X, Y, Z), or(X, Y, Z), and not(X, Y ) constraints are satisfied for some
values of X, Y and Z iff the tuple of variables is given by the truth-tables of the
corresponding boolean operators.

Proof
It must be shown that, for and(X, Y, Z) and or(X, Y, Z), once X and Y are bound to
some value, the value of Z is correct, i.e. it is unique (if several rules can be applied,
they give the same result) and it is equal to the value given by the corresponding
truth-table, and that all rows of the truth-tables are reached.
This can be verified by a straightforward case analysis.
For not(X, Y ) it can be easily shown that for any X, Y is given the opposite value.

4 Booleans on top of clp(FD)

The first approach we will present consists of implementing boolean constraints in
the constraint logic programming language over finite domains clp(FD), by using
the possibility to define new constraints in terms of the unique primitive constraint
of the system.

4.1 clp(FD) in a nutshell

As introduced in Logic Programming by the CHIP language, clp(FD) [13] is a
constraint logic language based on finite domains, where constraint solving is done
by propagation and consistency techniques originating from Constraint Satisfaction
Problems [19, 23, 34]. The novelty of clp(FD) is the use of a unique primitive
constraint which allows the user to define his own high-level constraints. The black
box approach gives way to glass box approach.
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4.1.1 The constraint X in r

The main idea is to use a single primitive constraint X in r, where X is a finite
domain (FD) variable and r denotes a range, which can be not only a constant
range, e.g. 1..10 but also an indexical range using:

• min(Y ) which represents the minimal value of Y (in the current store),

• max(Y ) which represents the maximal value of Y ,

• val(Y ) which represents the value of Y as soon as Y is ground.

A fragment of the syntax of this (simple) constraint system is given in table 2.

c ::= X in r (constraint)

r ::= t..t (interval range)
{t} (singleton range)
...

t ::= C (parameter)
n (integer)
min(X) (indexical min)
max(X) (indexical max)
val(X) (delayed value)
t + t (addition)
t - t (subtraction)
t * t (multiplication)
...

Table 2: fragment of the constraint system syntax

The intuitive meaning of such a constraint is: “X must belong to r in any store”.

The initial domain of an FD variable is 0..∞ and is gradually reduced by X in r
constraints which replace the current domain of X (DX) by D′

X = DX ∩ r at each
modification of r. An inconsistency is detected when D′

X is empty. Obviously, such
a detection is correct if the range denoted by r can only decrease. So, there are
some monotone restrictions about the constraints [32]. To deal with the special
case of anti-monotone constraints we use the general forward checking propagation
mechanism [16] which consists in awaking a constraint only when its arguments
are ground (i.e. with singleton domains). In clp(FD) this is achieved using a new
indexical term val(X) which delays the activation of a constraint in which it occurs
until X is ground.
As shown in the previous table, it is possible to define a constraint w.r.t. the
min or the max of some other variables, i.e. reasoning about the bounds of the
intervals (partial lookahead [31]). clp(FD) also allows operations about the whole
domain in order to also propagate the “holes” (full lookahead [31]). Obviously, these
possibilities are useless when we deal with boolean variables since the domains are
restricted to 0..1.
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4.1.2 High-level constraints and propagation mechanism

From X in r constraints, it is possible to define high-level constraints (called user
constraints) as Prolog predicates. Each constraint specifies how the constrained
variable must be updated when the domains of other variables change. In the
following examples X, Y are FD variables and C is a parameter (runtime constant
value).

’x+y=c’(X,Y,C):- X in C-max(Y)..C-min(Y), (C1)
Y in C-max(X)..C-min(X). (C2)

’x-y=c’(X,Y,C):- X in min(Y)+C..max(Y)+C, (C3)
Y in min(X)-C..max(X)-C. (C4)

The constraint x+y=c is a classical FD constraint reasoning about intervals. The
domain of X is defined w.r.t. the bounds of the domain of Y .

In order to show how the propagation mechanism works, let us trace the resolution
of the system {X + Y = 4, X − Y = 2} (translated via ’x+y=c’(X,Y,4) and
’x-y=c’(X,Y,2)):
After executing ’x+y=c’(X,Y,4), the domain of X and Y are reduced to 0..4 (C1

is in the current store: X in − ∞..4, C2 : Y in − ∞..4). And, after executing
’x-y=c’(X,Y,2), the domain of X is reduced to 2..4 (C3 : X in 2..6), which then
reduces the domain of Y to 0..2 (C4 : Y in 0..2).
Note that the unique solution {X = 3, Y = 1} has not yet been found. Indeed,
in order to efficiently achieve consistency, the traditional method (arc-consistency)
only checks that, for any constraint C involving X and Y , for each value in the
domain of X there exists a value in the domain of Y satisfying C and vice-versa.
So, once arc-consistency has been achieved and the domains have been reduced, an
enumeration (called labeling) has to be done on the domains of the variables to yield
the exact solutions. Namely, X is assigned to one value in DX , its consequences
are propagated to other variables, and so on. If an inconsistency arises, other
values for X are tried by backtracking. Note that the order used to enumerate the
variables and to generate the values for a variable can improve the efficiency in a
very significant manner (see heuristics in [31]).
In our example, when the value 2 is tried for X, C2 and C4 are awoken (because
they depend on X). C2 sets Y to 2 and C4 detects the inconsistency when it tries
to set Y to 0. The backtracking reconsiders X and tries value 3 and, as previously,
C2 and C4 are reexecuted to set (and check) Y to 1. The solution {X = 3, Y = 1}
is then obtained.

4.1.3 Optimizations

The uniform treatment of a single primitive for all complex user constraints lead to
a better understanding of the overall constraint solving process and allows for (a
few) global optimizations, as opposed to the many local and particular optimizations
hidden inside the black-box. When a constraint X in r has been reexecuted, if D′

X =
DX it was useless to reexecute it (i.e. it has neither failed nor reduced the domain
of X). Hence, we have designed three simple but powerful optimizations for the
X in r constraint [13, 10] which encompass many previous particular optimizations
for FD constraints:
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• some constraints are equivalent so only the execution of one of them is needed.
In the previous example, when C2 is called in the store {X in 0..4, Y in 0..∞}
Y is set to 0..4. Since the domain of Y has been updated, all constraints
depending on Y are reexecuted and C1 (X in 0..4) is awoken unnecessarily
(C1 and C2 are equivalent).

• it is useless to reexecute a constraint as soon as it is entailed. In clp(FD),
only one approximation is used to detect the entailment of a constraint X in r
which is “X is ground”. So, it is useless to reexecute a constraint X in r as
soon as X is ground.

• when a constraint is awoken more than once from several distinct variables,
only one reexecution is necessary. This optimization is obvious since the order
of constraints, during the execution, is irrelevant for correctness.

These optimizations make it possible to avoid on average 50 % of the total number
of constraint executions on a traditional set of FD benchmarks (see [13, 10] for full
details) and up to 57 % on the set of boolean benchmarks presented below.

4.1.4 Performances

Full implementation results about the performances of clp(FD) can be found in
[13, 10], and show that this “glass-box” approach is sound and can be competitive
in terms of efficiency with the more traditional “black-box” approach of languages
such as CHIP. On a traditional set of benchmark programs, mostly taken from [31],
the clp(FD) engine is on average about four times faster than the CHIP system,
with peak speedup reaching eight.

4.2 Building clp(B/FD)

In this section we specify the constraint solver, i.e. we define a user constraint for
each boolean constraint presented above. We then prove the correctness and com-
pleteness of this solver, and show how it really encodes the “operational semantics”
defined by theory B.

4.2.1 Designing the constraints

The design of the solver only consists in defining a user constraint for each boolean
constraint. As the constraint X in r makes it possible to use arithmetic operations
on the bounds of a domain, we use some mathematical relations satisfied by the
boolean constraints:
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and(X, Y, Z) satisfies Z = X × Y
Z ≤ X ≤ Z × Y + 1− Y
Z ≤ Y ≤ Z ×X + 1−X

or(X, Y, Z) satisfies Z = X + Y −X × Y
Z × (1− Y ) ≤ X ≤ Z
Z × (1−X) ≤ Y ≤ Z

not(X, Y ) satisfies X = 1− Y
Y = 1−X

The definition of the solver is then quite obvious and presented in table 3. It only
encodes the above relations.

and(X,Y,Z):- Z in min(X)*min(Y)..max(X)*max(Y),
X in min(Z)..max(Z)*max(Y)+1-min(Y),
Y in min(Z)..max(Z)*max(X)+1-min(X).

or(X,Y,Z):- Z in min(X)+min(Y)-min(X)*min(Y)..
max(X)+max(Y)-max(X)*max(Y),

X in min(Z)*(1-max(Y))..max(Z),
Y in min(Z)*(1-max(X))..max(Z).

not(X,Y):- X in {1-val(Y)},
Y in {1-val(X)}.

Table 3: The boolean solver definition

4.2.2 Correctness and completeness of clp(B/FD)

Theorem
The and, or, and not user constraints are correct and complete.

Proof
The proof of correctness consists in showing that each {0, 1} tuple satisfying the
relations defined above is an element of the appropriate truth-table. Completeness
w.r.t declarative semantics can be easily proved conversely, but we are mainly inter-
ested in showing that each time a rule of B can fire, the store is reduced as specified
by the rule. Namely, any tuple of variables satisfies the corresponding mathematical
relations enforced by the constraint solver. Here again, a case analysis proves the
result. For instance if and(X, Y, Z), Y = 1 → Z = X fires, Z ≤ X ≤ Z×Y +1−Y
is verified in the resulting store.

5 Performance evaluations of clp(B/FD)

5.1 The benchmarks

In order to test the performances of clp(B/FD) we have tried a set of traditional
boolean benchmarks:

13



• schur: Schur’s lemma. The problem consists in finding a 3-coloring of the
integers {1 . . . n} such that there is no monochrome triplet (x, y, z) where
x + y = z. The formulation uses 3× n variables to indicate, for each integer,
its color. This problem has a solution iff n ≤ 13.

• pigeon: the pigeon-hole problem consists in putting n pigeons in m pigeon-
holes (at most 1 pigeon per hole). The boolean formulation uses n×m vari-
ables to indicate, for each pigeon, its hole number. Obviously, there is a
solution iff n ≤ m.

• queens: place n queens on a n× n chessboard such that there are no queens
threatening each other. The boolean formulation uses n × n variables to
indicate, for each square, if there is a queen on it.

• ramsey: find a 3-coloring of a complete graph with n vertices such that there
is no monochrome triangles. The formulation uses 3 variables per edge to
indicate its color. There is a solution iff n ≤ 16.

All solutions are computed unless otherwise stated. The results presented below for
clp(B/FD) do not include any heuristics and have been measured on a Sun Sparc
2 (28.5 Mips). The following section compares clp(B/FD) with the commercial
version of CHIP. We have chosen CHIP for the main comparison because it is a
commercial product and a CLP language (and not only a constraint solver) and
thus accepts the same programs as clp(B/FD). Moreover, it also uses a boolean
constraint solver based on finite domains1. We also compare clp(B/FD) with other
specific constraint solvers.

5.2 clp(B/FD) versus CHIP

Times for CHIP were also measured on a Sun Sparc 2. Exactly the same programs
were run on both systems.
The average speedup of clp(B/FD) w.r.t. CHIP is around a factor of eight, with
peak speedup reaching two orders of magnitude, see table 4. This factor of eight can
be compared with the factor of four that we have on the traditional FD benchmarks.
The main reasons for this gap could be that in CHIP, booleans are written on
an existing solver whereas we have developed an appropriate solver thanks to the
X in r primitive, and that we have global optimizations for primitive constraints
from which all user constraints can benefit.

5.3 clp(B/FD) versus the rest

In this section, we compare clp(B/FD) with other specific boolean solvers. These
solvers are not programming languages, they accept a set of constraints as input
and solve it. So there are as many formulations as problem instances. On the other
hand, clp(B/FD) generates constraints at runtime (the overhead thus introduced
is limited to 20 %, so we do not need to worry too much about that). Another
important point to mention is that were not able to run exactly the same programs,
and we have used time measurements provided by the referenced papers (which
usually incorporate a large number of heuristics).

1the other solver of CHIP, based on boolean unification, became quickly unpracticable: none
of the benchmarks presented here could even run with it, due to memory limitations.
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CHIP clp(B/FD) CHIP
Program Time (s) Time (s) clp(B/FD)
schur 13 0.830 0.100 8.30
schur 14 0.880 0.100 8.80
schur 30 9.370 0.250 37.48
schur 100 200.160 1.174 170.49
pigeon 6/5 0.300 0.050 6.00
pigeon 6/6 1.800 0.360 5.00
pigeon 7/6 1.700 0.310 5.48
pigeon 7/7 13.450 2.660 5.05
pigeon 8/7 12.740 2.220 5.73
pigeon 8/8 117.800 24.240 4.85
queens 8 4.410 0.540 8.16
queens 9 16.660 2.140 7.78
queens 10 66.820 8.270 8.07
queens 14 1st 6.280 0.870 7.21
queens 16 1st 26.380 3.280 8.04
queens 18 1st 90.230 10.470 8.61
queens 20 1st 392.960 43.110 9.11
ramsey 12 1st 1.370 0.190 7.21
ramsey 13 1st 7.680 1.500 5.12
ramsey 14 1st 33.180 2.420 13.71
ramsey 15 1st 9381.430 701.106 13.38
ramsey 16 1st 31877.520 1822.220 17.49

Table 4: clp(B/FD) versus CHIP
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5.3.1 clp(B/FD) versus BDD methods

Adia is an efficient boolean constraint solver based on the use of BDDs. Time
measurements presented below are taken from [27], in which four different heuristics
are tried on a Sun Sparc IPX (28.5 Mips). We have chosen the worst and the best of
these four timings for Adia. Note that the BDD approach computes all solutions and
is thus unpracticable when we are only interested in one solution for big problems
such as queens for n ≥ 9 and schur for n = 30. Here again, clp(B/FD) has very
good speedups (see table 5, where the sign ↓ before a number means in fact a
slowdown of clp(B/FD) by that factor).

Bdd worst Bdd best clp(B/FD) Bdd worst Bdd best
Program Time (s) Time (s) Time (s) clp(B/FD) clp(B/FD)
schur 13 3.260 1.110 0.100 32.60 11.10
schur 14 5.050 1.430 0.100 50.50 14.30
pigeon 7/6 1.210 0.110 0.310 3.90 ↓ 2.81
pigeon 7/7 3.030 0.250 2.660 1.13 ↓ 10.64
pigeon 8/7 4.550 0.310 2.220 2.04 ↓ 7.16
pigeon 8/8 15.500 0.580 24.240 ↓ 1.56 ↓ 41.79
queens 6 2.410 1.010 0.060 40.16 16.83
queens 7 12.030 4.550 0.170 70.76 26.76
queens 8 59.210 53.750 0.490 120.83 109.69

Table 5: clp(B/FD) versus a BDD method

5.3.2 clp(B/FD) versus enumerative methods

[26] provides time measurements for an enumerative method for boolean unification
on a Sun 3/80 (1.5 Mips). We normalized these measurements by a factor of 1/19.
The average speedup is 6.5 (see table 6).

Enum clp(B/FD) Enum
Program Time (s) Time (s) clp(B/FD)
schur 13 0.810 0.100 8.10
schur 14 0.880 0.100 8.80
pigeon 5/5 0.210 0.060 3.50
pigeon 6/5 0.120 0.050 2.40
pigeon 6/6 2.290 0.360 6.36
pigeon 7/6 0.840 0.310 2.70
queens 7 0.370 0.170 2.17
queens 8 1.440 0.540 2.66
queens 9 6.900 2.140 3.22

Table 6: clp(B/FD) versus an enumerative method
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5.3.3 clp(B/FD) versus a boolean local consistency method

Here, we refer to [21] in which are presented the results of a boolean constraint solver
based on the use of local consistency techniques. Times are given on a Macintosh
SE/30 equivalent to a Sun 3/50 (1.5 Mips). We normalized them with a factor of
1/19. This solver includes two labeling heuristics, the most important being the
ability to dynamically order the variables w.r.t. the number of constraints still
active on them. On the other hand, clp(B/FD) only uses a static order (standard
labeling).
An interesting point is that the factors are quite constant within a class of problem.
clp(B/FD) is slower on the schur benchmark by a factor of 1.4, three times faster on
pigeon and four times faster on queens (see table 7 for more details). We conjecture
that this is because both solvers certainly perform much the same pruning, although
they are based on very different data-structures for the constraints and constraint
network.

BCons clp(B/FD) BCons
Program Time (s) Time (s) clp(B/FD)
schur 13 0.070 0.100 ↓ 1.42
schur 14 0.080 0.100 ↓ 1.25
pigeon 7/6 0.870 0.310 2.80
pigeon 7/7 7.230 2.660 2.71
pigeon 8/7 6.820 2.220 3.07
pigeon 8/8 67.550 24.240 2.78
queens 8 1.810 0.540 3.35
queens 9 7.752 2.140 3.62
queens 10 32.720 8.270 3.95
queens 14 1st 3.140 0.870 3.60
queens 16 1st 17.960 3.280 5.47

Table 7: clp(B/FD) versus a boolean local consistency method

5.3.4 clp(B/FD) versus an Operational Research method

We will compare here with the FAST93 method [4], which is based on 0-1 progam-
ming techniques from Operational Research. The time measurements are given for
a Sparc Station 1+ (18 MIPS), and therefore normalized by a factor 1/1.6 (see ta-
ble 8). It should be noted that on the benchmark problems, only the first solution
is computed. For the pigeon problem, FAST93 has good performances when the
problem is unsatisfiable (even for large values), i.e. when there are more pigeons
than holes (N > M). This is because the method can derive quickly that this
inequality is not satisfied. The pure boolean formulation that we have tested with
clp(B/FD) will not have as good results for larger values, but it is very easy to
add a non-boolean constraint N < M (that will detect inconsistency immediately),
because the system is embedded in a full finite domain solver. Observe that this
would not be possible in a pure boolean solver, and this explains why we do not
give this result in our comparisons.
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FAST93 clp(B/FD) FAST93
Program Time (s) Time (s) clp(B/FD)
pigeon 7/7 1st 0.250 0.020 12.50
pigeon 8/7 1st 1.940 2.220 ↓ 1.14
pigeon 8/8 1st 0.630 0.030 21
pigeon 9/8 1st 4.230 20.190 ↓ 4.77
pigeon 9/9 1st 0.690 0.040 17.25
ramsey 10 1st 11.500 0.110 104.54
ramsey 12 1st 81.440 0.190 428.42

Table 8: clp(B/FD) versus an Operational Research method

6 A dedicated boolean solver : clp(B)

In the above section we have seen that local propagation techniques are a good way
of dealing efficiently with boolean problems and particularly clp(FD) thanks to its
low-level X in r primitive. However, only a very restricted subset of the possibilities
offered by X in r was used when defining clp(B/FD). Here we are interested in
designing a specific propagation-based boolean solver, according to the glass-box
paradigm, which will be called clp(B). This work is interesting for many reasons.
First, it will allow us to evaluate the overhead of clp(FD) when only a restricted
part of X in r is used. Second, it will help to argue more precisely why local
propagation techniques are a very efficient way to deal with boolean constraints in
general. Third, it will present a surprisingly simple instruction set which will make
it possible to integrate boolean constraints in any Prolog compiler. It is worth
noticing that all well-known boolean solvers (CHIP, PrologIII, etc) are based on the
black-box approach, i.e. nobody knows exactly what there is inside these solvers,
except [12] which presents a glass-box (re)construction of a boolean solver based on
BDDs. From a design point of view, clp(B) is very similar to clp(FD). It is based
on a low-level primitive constraint l0 <= l1, . . . , ln and it offers the possibility to
define user constraints as Prolog predicates. Complex boolean constraints are also
translated at compile-time by a preprocessor.

6.1 The primitive constraint l0 <= l1, . . . , ln

Since the initial domain of a boolean variable is 0..1 it can be reduced only once.
A constraint is only triggered when some of its variables have become ground, and,
if this activation is useful, then the constrained variable will also become ground.
Thus, the more appropriate primitive must allow us to express propagation rules
which look like “as soon as X is false then set Z to false” and “as soon as both X
and Y are true then set Z to true” (for and(X,Y,Z)). Note the difference with the
clp(B/FD) formulation where the primitive X in r was used in a computational
way to calculate the value (0 or 1) to assign. The behavior of this primitive is very
similar to the ask definition of and(X,Y,Z) presented in [33]. Thus, we propose a
primitive constraint l0 <= l1, . . . , ln where each li is either a positive literal (X)
or a negative literal (−X) (see table 9 for a description of the syntax).
Associated to each literal li we define Xi as its variable and Bvaluei as its truth-
value. More precisely if li ≡ −X or li ≡ X then Xi = X. Similarly if li ≡ −X
(resp. li ≡ X) then Bvaluei = 0 (resp. Bvaluei = 1).
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c ::= l<=[l,...,l] (constraint)

l ::= X (positive literal)
-X (negative literal)

Table 9: Syntax of the constraint l0 <= l1, . . . , ln

The intuitive meaning of l0 <= l1, . . . , ln being “l0 must be entailed in any store
which entails l1 ∧ ...∧ ln” where li is entailed in a store iff Xi = Bvaluei is entailed
in this store.

Without any loss of generality, we can consider there is only either one or two literals
in the body of the primitive constraint. Indeed, the case n = 0 comes down to unify
X0 to Bvalue0 (see section 6.3.1) and the case n > 2 can be rewritten by replacing
l0 <= [l1, l2, l3, ..., ln] by l0 <= [l1, I2], I2 <= [l2, I3], ..., In−1 <= [ln−1, ln],
where each Ik is a distinct new boolean variable. In clp(B) a preprocessor is used for
these code-rewriting. This decomposition will allow us to implement very efficiently
the tell operation as shown below since only the two cases n = 1 and n = 2 remain.

6.2 Defining the constraints

As previously done in order to build clp(B/FD) we here define a user constraint for
each boolean constraint. It is worth noticing that the l0 <= l1, . . . , ln primitive
allows us to directly encode the propagation rules presented above2 The definition
of the solver is then quite obvious and presented in table 10.

and(X,Y,Z):- Z <= [X,Y], -Z <= [-X], -Z <= [-Y],
X <= [Z], -X <= [Y,-Z],
Y <= [Z], -Y <= [X,-Z].

or(X,Y,Z):- -Z <= [-X,-Y], Z <= [X], Z <= [Y],
-X <= [-Z], X <= [-Y,Z],
-Y <= [-Z], Y <= [-X,Z].

not(X,Y):- X <= [-Y], -X <= [Y],
Y <= [-X], -Y <= [X].

Table 10: The boolean solver definition

6.3 Integration of l0 <= l1, . . . , ln into the WAM

Let us now specify the abstract instruction set needed to implement the boolean
constraint solver, i.e. the unique constraint l0 <= l1, . . . , ln, into the standard ab-
stract machine used in Logic Programming, namely the Warren Abstract Machine.
See [35, 1] for a comprehensive introdution to the WAM.

2the proofs of correctness and completeness are obvious and left to the reader...
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6.3.1 Modifying the WAM for boolean variables

Here, we explain the necessary modifications of the WAM to manage a new data
type: boolean variables. They will be located in the heap, and an appropriate
tag is introduced to distinguish them from Prolog variables. Dealing with boolean
variables slightly affects data manipulation, unification, indexing and trailing in-
structions.

Data manipulation. Boolean variables, as standard WAM unbound variables,
cannot be duplicated (unlike it is done for terms by structure-copy). For example,
loading an unbound variable into a register consists of creating a binding to the
variable whereas loading a constant consists of really copying it. In the standard
WAM, thanks to self-reference representation for unbound variables, the same copy
instruction can be used for both of these kinds of loading. Obviously, a boolean
variable cannot be represented by a self-reference, so we must take care of this
problem. When a source word Ws must be loaded into a destination word Wd, if
Ws is a boolean variable then Wd is bound to Ws or else Ws is physically copied
into Wd.

Unification. A boolean variable X can be unified with:

• an unbound variable Y : Y is just bound to X,

• an integer n: if n = 0 or n = 1 the pair (X, n) is enqueued and the consistency
procedure is called (see sections 6.3.3 and 6.3.4).

• another boolean variable Y : equivalent to X <= [Y ], −X <= [−Y ],
Y <= [X] and −Y <= [−X]3.

Indexing. The simplest way to manage a boolean variable is to consider it as an
ordinary unbound variable and thus try all clauses.

Trailing In the WAM, unbound variables only need one word (whose value is fully
defined by their address thanks to self-references), and can only be bound once, thus
trailed at most once. When a boolean variable is reduced (to an integer n = 0/1)
the tagged word <BLV, > (see section 6.3.2) is replaced by <INT, n> and the tagged
word <BLV, > may have to be trailed. So a value-trail is necessary. Hence we have
two types of objects in the trail: one-word entry for standard Prolog variables,
two-word entry for trailing one previous value.

6.3.2 Data structures for constraints

clp(B) uses an explicit queue to achieve the propagation (i.e. each triggered con-
straint is enqueued). It is also possible to use an implicit propagation queue as
discussed in [10]. The register BP (Base Pointer) points to the next constraint to
execute, the register TP (Top Pointer) points to the next free cell in the queue. The
other data structure concerns the boolean variable. The frame of a boolean variable
X is shown in table 11 and consists of:

• the tagged word,
3we will describe later how constraints are managed.
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• the list of constraints depending on X. For reasons of efficiency two lists are
used: constraints depending on −X (Chain 0) and constraints depending on
X (Chain 1).

Chain 1 (pointer to a R Frame)
Chain 0 (pointer to a R Frame)

BLV unused

Table 11: Boolean variable frame (B Frame)

Since there are at most 2 literals in the body of a constraint c ≡ l0 <= l1, . . . , ln, if
c depends on X (i.e X1 = X or X2 = X) it is possible to distinguish the case n = 1
from the case n = 2. Intuitively, in the case n = 1 the constraint c can be solved
as soon as X is ground while c can still suspend until the other variable is ground
in the case n = 2 (see section 6.3.4 for more details). So, the case n = 2 requires
more information about the constraint to trigger since it is necessary to check the
other variable before executing it. The frame associated to a record (R Frame) of
the list Chain 0/1 consists of:

• the address of the boolean which is constrained (i.e. X0),

• the value to affect (i.e. Bvalue0),

• only if n = 2: the address of the other involved boolean variable

• only if n = 2: the value to be satisfied by the other involved variable

Table 12 summarizes the contents of a R Frame.

It is worth noting that, in the case n = 2, a record is necessary in the appropriate list
of X1 with a pointer to X2 and also in the appropriate list of X2 with a pointer to
X1. This “duplication” is very limited since it involves only 2 additional words. This
is enhanced in figure 2 which shows the data structures involved in the constraint
Z<=[-X,Y] (which could be used in the definition of xor(X,Y,Z)). The alternate
solution would use 1 additional word to count the number of variables which suspend
(the constraint being told as soon as this counter equals 0).

Bvalue 2 \ (only used
Blv 2 Adr / if Bloc2 Flag is true)
Bloc2 Flag (case n = 2 ?)
Tell Bvalue
Tell Blv Adr (a pointer to a B Frame)
Next Record (a pointer to a R Frame)

Table 12: Record Frame (R Frame)
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Variable X

Chain_1

Chain_0

BLV

Chain_1

Chain_0

BLV

Chain_1

Chain_0

BLV

Variable Y

Variable Z

BValue_2=1

Blv_2_Adr

Bloc2_Flag=On

Tell_BValue=1

Tell_Blv_Adr

Next_Record

BValue_2=0

Blv_2_Adr

Bloc2_Flag=On

Tell_BValue=1

Tell_Blv_Adr

Next_Record

R_Frame R_Frame

Figure 2: Data structures involved in the constraint Z<=[-X,Y]
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6.3.3 Compilation scheme and instruction set

The compilation of a constraint l0 <= l1, . . . , ln consists of two parts:

• loading X0,...,Xn into WAM temporaries (i.e. Xi registers),

• installing and telling the constraint, i.e. creating the necessary R Frame(s),
detecting if the body of the constraint is currently entailed by the store (see
section 6.1) to enqueue the pair (X0, Bvalue0) and to call the consistency
procedure (described in section 6.3.4).

Loading instructions are:

b load variable(Vi,Xj)
binds Vi to a boolean variable created on top of the heap and puts its address
into Xj.

b load value(Vi,Xj)
let w be the dereferenced word of Vi, if it is:

• an unbound variable: similar to b load variable(w,Xj).

• an integer n: fails if n 6= 0 and n 6= 1 or else n is pushed on the heap
and its address is stored into Xj.

• a boolean variable: its address is stored into Xj.

Install and telling instructions (defined in the case n = 1 or n = 2) are:

b install and tell cstr1(X0,bvalue0,X1,bvalue1)
two cases depending on X1:

• X1 is an integer: if X1=bvalue1, (X0, bvalue0) is enqueued and the con-
sistency procedure called (else the constraint succeeds immediately as
the premise is false).

• X1 is a boolean variable: an R Frame (created on the top of the heap) is
added to the appropriate list of X1 recording X0 and bvalue0.

b install and tell cstr2(X0,bvalue0,X1,bvalue1,X2,bvalue2)
three cases depending on X1 and X2:

• X1 is an integer:
it behaves like b install and tell cstr1(X0,bvalue0,X2,bvalue2).

• X2 is an integer:
it behaves like b install and tell cstr1(X0,bvalue0,X1,bvalue1).

• X1 and X2 are two boolean variables: an R Frame (created on the top of
the heap) is added to the appropriate list of X1 recording X0, bvalue0
and X2, bvalue2, and similarly an R Frame is added to the appropriate
list of X2 recording X0, bvalue0 and X1, bvalue1.

It is worth noticing that only 4 instructions are needed to implement this boolean
solver into the WAM. The extension is really minimal. Our experience has shown
that in this way only a few days are necessary to incorporate boolean constraints
into a Prolog compiler whose sources are well-known.
Table 13 shows an example of code generated for the user constraint and(X,Y,Z).
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and/3: b load value(X[0],X[0]) X(0)=address of X
b load value(X[1],X[1]) X(1)=address of Y
b load value(X[2],X[2]) X(2)=address of Z
b install and tell cstr2(X[2],1,X[0],1,X[1],1) Z <= [X,Y]
b install and tell cstr1(X[2],0,X[0],0) -Z <= [-X]
b install and tell cstr1(X[2],0,X[1],0) -Z <= [-Y]
b install and tell cstr1(X[0],1,X[2],1) X <= [Z]
b install and tell cstr2(X[0],0,X[1],1,X[2],0) -X <= [Y,-Z]
b install and tell cstr1(X[1],1,X[2],1) Y <= [Z]
b install and tell cstr2(X[1],0,X[0],1,X[2],0) -Y <= [X,-Z]
proceed Prolog return

Table 13: Code generated for and(X,Y,Z)

6.3.4 The consistency procedure

This procedure is responsible for ensuring the consistency of the store. It repeats
the following steps until the propagation queue is empty (or until a failure occurs):
Let (X, Bvalue) be the pair currently pointed by BP.

• If X is an integer, there are two possibilities:

– X = Bvalue: success (Check Ok)

– X 6= Bvalue: failure (Fail)

• else the boolean variable X is set to Bvalue (Reduce) and each constraint
depending on X (i.e. each record of Chain Bvalue) is reconsidered as follows:

– case n = 1 : the pair (X0, Bvalue0) is enqueued.

– case n = 2: let us suppose that X = X1, the case X = X2 being identical.
The variable X2 must be tested to detect if the constraint can be solved:

∗ X2 is an integer: if X2 = Bvalue2 then the pair (X0, Bvalue0) is
enqueued or else the constraint is already solved (Solved).

∗ X2 is a boolean variable: the constraint still suspends (Suspend).

Each constraint (X, Bvalue) in the queue will be activated and can have one of the
following issues:

• Reduce: the boolean variable X is set to the integer Bvalue,

• Check Ok: X already equals Bvalue,

• Fail: X is an integer different from Bvalue.

When a constraint (X, Bvalue) has Reduce as issue, the propagation reconsider all
constraints depending on X. Each such constraint will be enqueued in order to be
activated (and taken into account by the above cases) or ignored (only if n = 2)
due to:

• Suspend: the other variable of the constraint is not yet ground,

• Solved: the other variable is ground but does not correspond to the “sign” of
its literal, i.e. the premisse is false.
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6.3.5 Optimizations

Obviously, Check Ok corresponds to a useless tell since it neither reduces the variable
nor fails. As for clp(FD) we can avoid some of such tells [10]. However, in the
simpler framework of clp(B), empirical results show that there is no gain in terms
of efficiency. Indeed, a useless tell only consists in a test between two integers and
the detection of the possibility to avoid such a tell also involves a test between
integers.

The Solved issue also corresponds to a useless work since the constraint is already
entailed (see [10]).

Figure 3 makes it possible to estimate the proportion of each issue for some instances
of our benchmarks.
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Figure 3: Proportion of each issue of the consistency procedure

7 Performances of clp(B)

Table 14 shows the performances of clp(B) and the corresponding speedup w.r.t.
clp(B/FD) and all other solvers above presented. The sign “ovflw” means that the
program exhausted available memory, and the symbol “?” means that the timing
was not available to us.
Basically, clp(B) is about twice as fast as clp(B/FD) on average. This factor varies
only slightly between 1.5 and 2.5 depending on the problem, showing that the two
systems perform the same pruning. clp(B) achieves better performances because
of its simpler data-structures and internal computations. Therefore, in comparing
clp(B) with other solvers, the same arguments apply: we have a general system

25



without any specific heuristic versus specialized solvers which usually include very
effective heuristics. Nevertheless clp(B) proved to be, on the benchmark problems
available, more efficient than all other solvers (except BDDs with the best order for
one example), usually by more than one order of magnitude.

clp(B) clp(B/FD) CHIP Bdd best Enum BCons
Program Time (s) clp(B) clp(B) clp(B) clp(B) clp(B)
schur 13 0.040 2.50 20.57 27.75 20.25 1.75
schur 14 0.040 2.50 22.00 35.75 22.00 2.00
schur 30 0.100 2.50 93.70 ovflw ? ?
schur 100 0.620 1.89 322.83 ovflw ? ?
pigeon 6/5 0.020 2.50 15.00 3.00 2.00 6.50
pigeon 6/6 0.180 2.00 10.00 ↓ 1.80 12.72 4.88
pigeon 7/6 0.110 2.81 15.45 1.00 7.63 7.90
pigeon 7/7 1.390 1.91 9.67 ↓ 5.56 ? 5.20
pigeon 8/7 0.790 2.81 16.12 ↓ 2.54 ? 8.63
pigeon 8/8 12.290 1.97 9.58 ↓ 21.18 ? 5.49
queens 6 0.040 1.50 ? 25.25 1.75 ?
queens 7 0.090 1.88 ? 50.55 4.11 ?
queens 8 0.230 2.34 19.17 233.73 6.26 7.86
queens 9 0.860 2.48 19.37 ovflw 8.02 9.01
queens 10 3.000 2.75 22.27 ovflw ? 10.90
queens 14 1st 0.500 1.74 12.56 ovflw ? 6.28
queens 16 1st 1.510 2.17 17.47 ovflw ? 11.89
queens 18 1st 4.450 2.35 20.27 ovflw ? ?
queens 20 1st 17.130 2.51 22.93 ovflw ? ?
ramsey 12 1st 0.130 1.46 10.53 ovflw ? ?
ramsey 13 1st 0.690 2.17 11.13 ovflw ? ?
ramsey 14 1st 1.060 2.28 31.30 ovflw ? ?
ramsey 15 1st 292.220 2.39 32.10 ovflw ? ?
ramsey 16 1st 721.640 2.52 44.17 ovflw ? ?

Table 14: clp(B) versus all other solvers

8 Conclusion and perspective

We have presented several techniques based on local consistency and propagation
techniques for solving boolean constraints.
We have formally defined the boolean constraint system by a rule-based operational
semantics for the entailment relation which encodes the propagation scheme for
boolean constraints and proved its equivalence w.r.t the declarative definition of
boolean expressions through truth-tables.
A very simple boolean constraint solver clp(B/FD), built upon the finite domain
constraint logic language clp(FD), has first been proposed, and we have also proved
that this clp(B/FD) solver really encodes the operational semantics.
The clp(B/FD) solver is very efficient, being eight times faster than the CHIP
boolean solver on average, and also several times faster than special-purpose stand-
alone boolean solvers of very different nature : resolution methods, BDD-based
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methods, enumerative methods, Operational Research techniques. This proves
firstly that the propagation techniques proposed for finite domains are very com-
petitive for booleans and secondly that, among such solvers, the glass-box approach
of using a single primitive constraint X in r is very interesting and it makes it
possible to encode other domains (such as boolean domains) at a low-level, with
better performances than the “black-box”. An additional advantage is the complete
explicitation of the propagation scheme.
Nevertheless, performances can be improved by simplifying the data-structures used
in clp(FD), which are designed for full finite domain constraints, and specializing
them for booleans by explicitly introducing a new type and new instructions for
boolean variables. For instance, it is possible to reduce the variable frame repre-
senting the domain of a variable and its associated constraints to only two words:
one pointing to the chain of constraints to awake when the variable is bound to 0
and the other when it is bound to 1. Such a solver is very compact and simple; it is
based again on the glass-box approach, and uses only a single low-level constraint,
more specialized than the X in r construct, into which boolean constraints such
as and, or or not are decomposed. This primitive constraint can be implemented
in a WAM-based logical engine with a minimal extension : only four new abstract
instructions are needed. This surprisingly simple instruction set makes it possible
to integrate boolean constraints in any Prolog compiler very easily. Our experi-
ence shows that it only requires a few days of implementation work... Moreover,
this dedicated solver, called clp(B), provides a further factor two speedup w.r.t.
clp(B/FD) and is therefore more efficient than all other solvers we have been able
to compare with.
It is worth noticing that in clp(FD) the only heuristic available for labeling is the
classical “first-fail” based on the size of the domains which is obviously useless for
boolean constraints. Some more flexible primitives (e.g. number of constraints on
X, number of constraints using X) would be necessary in order to express, at the
language level, some complex labeling heuristics [31], [21]. Such a labeling however
requires complex entailment and disentailment detection for constraint, that we are
currently investigating [9].
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