
Entailment of Finite Domain Constraints

Björn Carlson and Mats Carlsson
Swedish Institute of Computer Science
Box 1263, S-164 28 KISTA, Sweden
{bjornc,matsc}@sics.se

Daniel Diaz
INRIA-Rocquencourt
Domaine de Voluceau
78153 Le Chesnay, France
Daniel.Diaz@inria.fr

Abstract Using a glass-box theory of finite domain constraints, FD, we
show how the entailment of user-defined constraints can be expressed by anti-
monotone FD constraints. We also provide an algorithm for checking the
entailment and consistency of FD constraints. FD is shown to be expressive
enough to allow the definition of arithmetical constraints, as well as non-
trivial symbolic constraints, that are normally built in to CLP systems.
In particular, we use conditional FD constraints, which exploit entailment
checking, to define symbolic constraints. Thus, we claim that a glass-box
system such as FD is expressive enough to capture the essence of finite
domain constraint programming.

Keywords: constraint logic programming, finite domain constraints,
entailment, monotonicity.

1 Introduction

The glass-box approach to constraint logic programming consists in control-
ling the constraint solver at a more detailed level than what is possible in
a system where the solver is provided as a black box. Constraints that are
builtins of a black-box solver, are instead defined by programming primitives
of the glass-box [5, 13, 4, 1]. Combinators of a glass-box system typically
include conjunction, implication and disjunction.

The benefits of using glass-box systems are that the programmer is given
more freedom of how to specify a problem, since the constraints can be
tailored with respect to the problem at hand, and that the problem can be
solved more efficiently since it need not be reduced to fit the constraints of
the solver.

Furthermore, the implementation of a glass-box system lifts the complex-
ity from the emulator level to the compiler level, as well as making available
traditional compiler optimization techniques. The net result being that the
implementations of glass-box systems can be made highly efficient [3, 13, 1].

In this paper we study how to use the glass-box system FD [12] to define

1

non-trivial finite domain constraints and to check their entailment. We show
that by using conditional reasoning, based on entailment, complex symbolic
constraints can be defined in FD. Entailment has previously been recognized
as the key to how concurrent and constraint programming can be merged
[8, 10], but hence it serves an important function even within a constraint
logic programming framework.

By exploiting the monotonicity of FD constraints we show that entail-
ment checking can be done purely in terms of anti-monotone FD constraints.
Hence, FD is expressive enough both to define complex constraints and to
check their entailment.

The method we propose works by translating a constraint definition into
a sufficient truth condition, where some attention is put into making the
condition minimal. The condition is translated into an anti-monotone FD
constraint, which can efficiently be checked by an algorithm we provide.

The paper is structured as follows: we begin by describing the FD the-
ory (Section 2), including a section on how to define constraints in FD,
where some non-trivial constraints are defined. We then show how a con-
straint definition is translated into a sufficient truth condition (Section 3).
A section follows which describes a translation of the truth conditions into
anti-monotone FD constraints, and which includes algorithms for checking
the monotonicity and the entailment of FD constraints (Section 4). A short
summary concludes the paper (Section 5).

2 FD: A Theory of Finite Domain Constraints

The constraint system FD [12] is a general purpose constraint framework for
solving discrete constraint satisfaction problems in a concurrent constraint
setting. The theory is based on unary constraints by which higher arity
constraints are defined, so for example constraints such as X = Y or X ≤ 2Y
are defined by FD constraints, instead of being built in to the theory. The
unary constraints of FD are thought of as propagation rules, i.e. rules for
describing node and arc consistency propagation.

The unary constraints of FD can be used as the target language for
compilers of arbitrary finite domain constraints [2], and in fact FD subsumes
basically all existing finite domain constraint systems with preserved and
sometimes improved efficiency [1, 3, 4].

2.1 The theory

FD is based on domain constraints X ∈ I, where I is a set of integers
described by a finite union of intervals. The set I is the set of possible values
of X, and X is said to be constrained to I. X ∈ I is satisfied by assigning a
value in I to X.

A set S of domain constraints, where any two domain constraints X ∈ I
and X ∈ I ′ have been replaced by X ∈ (I ∩ I ′), is called a store. Hence,

2

N ::= X | i, where i ∈ Z
T ::= N | T + T | T − T | T ∗ T | T/T | T mod T |

min(R) | max(R)
R ::= T..T | T.. | ..T | R & R | R : R | −R |

R + T | R− T | R mod T |
dom(X)

C ::= N in R | C → C | C ∧ C

Figure 1: Syntax of constraints in FD

a store S is consistent if there is no domain constraint X ∈ ∅ in S. The
set which X is constrained to in S is denoted by XS in the following. X is
determined in S if XS = {n}.

Suppose S1 and S2 are two stores. Let S1 v S2 if for any variable X it
holds XS2 ⊆ XS1 .

The computational primitive of FD, X in r, is a partial function from
stores to domain constraints, such that X in r applied to a store S evaluates
to a domain constraint X ∈ rS , where rS is the value of r in S (see below).
The expression r is called a range (defined by R in Figure 1), which denotes
a partial function from stores to finite unions of intervals over the integers.
We will refer to X in r as an indexical in the following [12].

The partial function r is evaluated in a store S as follows. Any variable
V not occurring as dom(V) in r must be determined in S, and any variable
V occurring as dom(V) in r must be constrained in S to make r in S well-
defined. The value of a range r in S, rS , is thus a set of integers defined as:
the expression dom(Y) evaluates to YS , the expression t1..t2 is interpreted
as the set {i ∈ Z: t1S ≤ i ≤ t2S}, the expression t.. is interpreted as the set
{i ∈ Z: tS ≤ i}, the expression ..t is interpreted as the set {i ∈ Z: i ≤ tS},
the operators : and & denote union and intersection respectively, the
expressions r + t, r − t, and r mod t denote pointwise integer addition,
subtraction, and modulo of rS and tS , where t cannot contain max or min
terms, and finally the value of −r in S is the set Z\rS .

The value of a term t in S, tS , is an integer defined as: a number is
interpreted as itself, a variable is evaluated to its assignment, the interpreta-
tion of the arithmetical operators is the interpretation over the integers, and
the expressions min(r) and max(r) evaluate to the infimum and supremum
values of rS . It is required that in a modulo expression t mod t0, t0 does
not contain max or min terms. If every variable in t is determined in S, t
is determined in S.

The set of FD constraints is the set of indexicals closed under (intuition-
istic) implication and conjunction. In the following we sometimes refer to
implications as conditional constraints.

Let S be a store, and c (d) be a constraint in FD. Thus define:

• S entails X in r if r is defined in S and XS′ ⊆ rS′ , for any S′ such

3

that S v S′.

• S entails c ∧ d if S entails c and S entails d.

• S entails c → d if for every S′, S v S′, if S′ entails c then S′ entails d.

• c is consistent in S if for some S′, S v S′, S′ entails c.

• c is inconsistent in S if c is not consistent in S.

Finally, r is monotone if for every pair of stores S1 and S2 such that
S1 v S2, rS2 ⊆ rS1 . r is anti-monotone if for every pair of stores S1 and S2

such that S1 v S2, rS1 ⊆ rS2 .
X in r is monotone (anti-monotone) if r is monotone (anti-monotone),

c∧d is monotone (anti-monotone) if c and d are monotone (anti-monotone),
and c → d is monotone (anti-monotone) if d is monotone (anti-monotone).
Monotone constraints are used for adding domain constraints to the store,
and anti-monotone constraints are used for checking entailment (see Section
3).

In the following we will use min(X) as shorthand for min(dom(X)).
Also we use the variable r for ranges, the variable t for terms, the variables
n for natural numbers and i for integers, and the variable c for constraints,
where all the symbols may be indexed.

2.2 Defining constraints in FD

We define n-ary (arithmetical) constraints as FD constraints, the intention
being that the denotation of the n-ary constraint should be captured by the
interpretation of the FD expression.

Put more formally: suppose p is an n-ary relation over the integers, let
H be p(X1, . . . , Xn), and let S be a store. Then S ⇒ H if {〈a1, . . . , an〉: ai ∈
XiS} ⊆ p. Furthermore, suppose c is a constraint in FD. We then require
the following to make c a definition of p.

1. If S entails c, then S ⇒ H.

2. If S determines Xi and S ⇒ H, then S entails c, 1 ≤ i ≤ n.

In the following we adapt to the clause syntax of Prolog and use “:-” for
definitions and “,” for conjunction.
Example 1. The constraint X = Y + 1 can be defined as:
X = Y + 1 : −

X in dom(Y) + 1,
Y in dom(X)− 1.

or as
X = Y + 1 : −

X in (min(Y)+1)..(max(Y)+1),
Y in (min(X)−1)..(max(X)−1).

4

Hence, X (Y) is constrained by either the domain of Y (X), or by the
minimum and maximum of Y (X). The domain approximation performs
stronger propagation than the interval approximation, but the interval ver-
sion is more efficient to compute. For a careful examination of domain and
interval approximations of constraints see elsewhere [6, 13, 14].

Note that operationally the constraint propagation implemented by the
FD constraints may be weaker than what can be performed by a constraint
solver for the n-ary constraint.

Example 2. The constraint X 6= Y can be defined either as
X 6= Y : −

X in − dom(Y),
Y in − dom(X).

or as
X 6= Y : −

X in − (max(Y)..min(Y)),
Y in − (max(X)..min(X)).

thus either the constraint is defined to be anti-monotone or monotone (see
Section 4.3).

Example 3. We define the constraint (X = A) ≡ B, where B is 0 iff
X 6= A is true, and B is 1 iff X = A is true, as
(X = A) ≡ B : −

X = A → B = 1,
B = 1 → X = A,
X 6= A → B = 0,
B = 0 → X 6= A.

Let us detail some symbolic constraints which need entailment detection,
constraints that are normally built in to a CLP system but which can nat-
urally be defined using conditionals.
Example 4. The magic series problem [11] consists in finding a sequence
of numbers {X0, . . . , Xn} such that i occurs Xi times in the sequence. The
original formulation [11] used a freeze on each Xi. However, owing to
entailment detection it is possible to simply encode the following relation
[9]:

Xj =
n∑

i=0

(j)i

where (j)i is 1 if Xi = j and 0 if Xi 6= j. This is achieved by defining Bji

as (Xi = j) ≡ Bji, and adding the constraints
∑n

i=0 Bji = Xj , for each j
between 0 and n.

Obviously, the constraint propagation obtained with this constraint is
stronger than the propagation of the formulation using freeze. In [4] it is
shown that the speedup with respect to the CHIP definition grows with n.

5

Finally, note that the constraint atmost(N, L, V), which is true iff V
occurs at most N times in L, can be defined by

∑n
i=1 Bi ≤ N , where L =

[X1, . . . , Xn], and (Xi = V) ≡ Bi, 1 ≤ i ≤ n.

Example 5. Similarly, the constraint element(I,E,V), which holds iff
the Ith element of E equals V , can be defined by conditional constraints as:
let E be the list [E1, . . . , Ek], and suppose 1 ≤ I ≤ k and Bi in 0 : i hold,
for each i between 1 and k. The following constraints define the element/3
relation:

• I = i → Ei = V

• I in dom(B1) : · · · : dom(Bk), where

• Ei 6= V → Bi = 0, and

• Ei = V → Bi = i.

However, note that this version of element/3 does not exploit the full prun-
ing possible from the denotation of the constraint [1].

3 Entailment Conditions

In this section we characterize the entailment of FD constraints by sufficient
truth conditions.

3.1 Entailment of indexicals

The aim of this section is to show how to generate logical conditions to
detect entailment and inconsistency of indexicals. The basic idea being that
ranges are approximated by intervals, and thus entailment detection is made
by reasoning over intervals. In later sections (Section 4 and 4.2) we use the
conditions to generate anti-monotone indexicals which decide the conditions.

The general problem of deciding entailment of finite domain constraints
belongs to NP, and thus we cannot expect to have efficient and complete
entailment detection. Instead we choose to use entailment conditions which
are efficient to compute (see Section 4.2), and in practice sufficiently strong.

In the following we consider only linear FD terms, which simplifies the
presentation, but the tables can be generalized to hold for all FD terms.

Let inf (sup) be a function from linear terms to values which increases
(decreases) as the computation progresses. That is, inf (t) (sup(t)) is the
smallest (largest) value that t can ever get (see Table 1).

Let mk be the partial function such that mk(t) = t mod k when t is
determined, let ai be the function such that ai(t) = t + i, let f ◦ g be
defined as (f ◦ g)(t) = f(g(t)), and let c be X in r, for some X and r.
Let Ec (entailment condition) and Dc (inconsistency condition) be the two

6

t inf (t) sup(t)
i i i
t1 + t2 inf (t1) + inf (t2) sup(t1) + sup(t2)
t ∗ n inf (t) ∗ n sup(t) ∗ n
t ∗ (−n) sup(t) ∗ (−n) inf (t) ∗ (−n)
t1 − t2 inf (t1)− sup(t2) sup(t1)− inf (t2)
t/n inf (t)/n sup(t)/n
t/(−n) sup(t)/(−n) inf (t)/(−n)
i mod n i mod n i mod n
min(X) min(X) max(X)
max(X) min(X) max(X)

Table 1: Upper and lower bounds of linear FD-terms

r E(X, r, f)
t.. min(X) ≥ sup(f(t))
..t max(X) ≤ inf (f(t))
t1..t2 min(X) ≥ sup(f(t1)) ∧max(X) ≤ inf (f(t2))
dom(Y) E(X,min(Y)..max(Y), f)
r1 : r2 E(X, r1, f) ∨ E(X, r2, f)
r1 & r2 E(X, r1, f) ∧ E(X, r2, f)
−r D(X, r, f)
r + t E(X, r, f ◦ at)
r − t E(X, r, f ◦ a−t)
r mod t E(X, r, f ◦mt)

Table 2: Definition of E(X, r, f)

logical expressions defined by E(X, r, a0) and D(X, r, a0), where E and D
are defined in Table 2 and Table 3.

Observe that if Ec (resp. Dc) is true in a store S then Ec (resp. Dc) is
true in any store logically stronger than S. This follows from an inductive
reasoning over the structure of c.

The correctness of the translation is shown by proving that if Ec (Dc)
is true then c is entailed (inconsistent). This is done by induction over the
structure of c. Thus, Ec and Dc are sufficient truth conditions for c.
Example 6. Let us consider the constraint (c) X in min(Y).., which can
be used to impose X ≥ Y . It follows from the above that Ec ≡ min(X) ≥
max(Y) and Dc ≡ max(X) < min(Y). Thus, Ec is true (i.e. X ≥ Y
is detected) as soon as all possible values of X are greater or equal to any
possible value of Y , and Dc is true as soon as no possible value of X can be
greater or equal to any possible value of Y .

7

r D(X, r, f)
t.. max(X) < inf (f(t))
..t min(X) > sup(f(t))
t1..t2 max(X) < inf (f(t1))∨

min(X) > sup(f(t2))∨
inf (f(t1)) > sup(f(t2))

dom(Y) D(X,min(Y)..max(Y), f)
r1 : r2 D(X, r1, f) ∧D(X, r2, f)
r1 & r2 D(X, r1, f) ∨D(X, r2, f)
−r E(X, r, f)
r + t D(X, r, f ◦ at)
r − t D(X, r, f ◦ a−t)
r mod t D(X, r, f ◦mt)

Table 3: Definition of D(X, r, f)

3.2 Entailment of user defined constraints

To deal with user defined constraints we need to generalize the truth con-
ditions (see Section 3.1) to FD constraints as follows. Let c be an FD con-
straint. Then Ec (Dc) is defined as

• EX in r = E(X, r, a0) and DX in r = D(X, r, a0).

• Ec∧d = Ec ∧ Ed and Dc∧d = Dc ∨Dd.

• Ec→d = Dc ∨ Ed and Dc→d = Ec ∧Dd.

However, in many typical definitions Ec∧d (Dc∧d) can be reduced to Ec (Dc)
since Ec ≡ Ed (Dc ≡ Dd).
Example 7. Let us consider the user constraint X ≥ Y defined as:
X ≥ Y : −
(cX) X in min(Y).. ,
(cY) Y in ..max(X).

From the above constraints it follows:

• EcX ≡ EcY ≡ min(X) ≥ max(Y)

• DcX ≡ DcY ≡ max(X) < min(Y)

Hence, EX≥Y = EcX ∧ EcY ≡ EcX , and DX≥Y ≡ DcX .

Example 8. Consider X 6= Y defined as:
X 6= Y : −
(cX) X in − dom(Y),
(cY) Y in − dom(X).

The conditions detect when the domains of X and Y do not overlap anymore
as:

8

EX 6=Y ≡ EX in −dom(Y) (cX and cY are equivalent)
≡ DX in dom(Y)

≡ DX in min(Y)..max(Y)

≡ max(X) < min(Y) ∨min(X) > max(Y)

For checking the equivalence of two entailment conditions a normalization
procedure can be used. Let c be a (monotone) FD constraint, and Πc its
associated truth (Ec) or falsity (Dc) condition.

The normalization of Πc is done by rewriting Πc into a disjunctive normal
form, where each term in Πc is replaced by its additive normal form. The
rewriting is done by applying rewrite rules defined below. A rewrite rule
applies if its template matches a substrate expression, modulo associativity
and commutativity for { : , & , ∗,+,∧,∨}, replacing the substrate expression
by a rewritten expression.

Given the following list of rewrite rules we iterate in top-down order
through the list, applying a rule if it applies anywhere in the condition. If
a rule is applied, the iteration is restarted from the beginning of the list.
When no rule in the list applies, the iteration is terminated.

DNF. The disjunctive normal form of a condition is computed by the fol-
lowing rule:

E ∧ (E1 ∨ E2) ⇒ (E ∧ E1) ∨ (E ∧ E2)

ANF. The following rules compute the additive normal form of a term:

t ∗ (t1 · t2) ⇒ t ∗ t1 · t ∗ t2 (· ∈ {+,−})

MS. Subtraction is moved across inequalities as:

t1 − t · t2 ⇒ t1 · t2 + t, · ∈ {≤,≥}
t1 · t2 − t ⇒ t1 + t · t2, · ∈ {≤,≥}

Let Πc1 and Πc2 be two normalized entailment conditions. Πc1 and Πc2

are equal up to commutativity and associativity of ∧ and ∨, if each cor-
responding pair of inequalities in Πc1 and Πc2 are equal. Two inequalities
t1 ≤ t2 and t3 ≤ t4 are equal iff t1 equals t3 and t2 equals t4, where equality
between terms is defined as identity up to commutativity and associativity
of + and ∗.

The correctness of the algorithm is shown by proving that if Πc1 and Πc2

are decided equivalent then Πc1 is true iff Πc2 is true. This is done by proving
the correctness of each rewrite rule, and that the equivalence relation defined
for normalized conditions is true equivalence.

The normalization terminates since DNF replaces a conjunction with
two smaller conjunctions, ANF replaces a product with two smaller prod-
ucts, and the MS rules decrease the number of subtractions each time ap-
plied.

9

X in r in S r monotone r anti-monotone
XS ∩ rS = ∅ inconsistent may become entailed
XS ⊆ rS may become inconsistent entailed
XS 6= (XS ∩ rS) 6= ∅ may become inconsistent may become entailed

Table 4: Entailment/Consistency of X in r in a store S

Note that the algorithm is incomplete since for example the two con-
straints X in 1..0 and X in dom(Y) & −dom(Y) are logically equivalent,
but are not decided such.

4 Entailment constraints

In this section we give a decision table for detecting entailment of indexicals,
which is based on their monotonicity, and we show how to exploit this table
to evaluate the entailment conditions (see Section 3.1). Furthermore we give
an inductive definition of the monotonicity of X in r, which is needed to
implement the entailment checking.

4.1 Entailment detection of X in r

Let c be X in r, and let S be the current constraint store. Suppose X is
constrained in S to a (finite) set XS , and let rS be the value of r in S.

The entailment of c in S is checked using a case-analysis based on the
value of X and r in S and on the monotonicity of r (see Table 4).

For example, suppose c is monotone and constrains X to the empty set
in S. Then c is inconsistent in S since in any store stronger or equal to S,
c will constrain X to the empty set. However, if c is anti-monotone and
constrains X to the empty set in S, then there may be stores stronger than
S in which c constrains X to something other than the empty set. Hence, c
may or may not become entailed when S is strengthened.

If c is anti-monotone and XS is a subset of rS then c is entailed in S.
Finally, if c is monotone and constrains X to something other than the empty
set, c still may become inconsistent.

Computationally, whenever a constraint has become entailed it can be
discarded, and whenever a constraint is inconsistent the computation fails.
In all other cases the computation records (suspends) the constraint so that
when the store is updated the constraint can be rechecked when necessary
[1, 3]. If c is monotone, X ∈ (XS ∩ rS) is added to the store.
Example 9. Again we use disequality as an example. Suppose we define
X 6= Y as
X 6= Y : −
(cX) X in − dom(Y),
(cY) Y in − dom(X).

10

r νE(X, r, f)
t.. (sup(f(t))−min(X))..
..t ..(inf (f(t))−max(X))
t1..t2 (sup(f(t1))−min(X))..(inf (f(t2))−max(X))
dom(Y) νE(X,min(Y)..max(Y), f)
r1 : r2 νE(X, r1, f) : νE(X, r2, f)
r1 & r2 νE(X, r1, f) & νE(X, r2, f)
−r νD(X, r, f)
r + t νE(X, r, f ◦ at)
r − t νE(X, r, f ◦ a−t)
r mod t νE(X, r, f ◦mt)

Table 5: E(X, r, f) expressed as a range

Observe that cX and cY are anti-monotone. Suppose the domains of X and
Y are disjoint in a given store S. Hence, XS ⊆ −YS and YS ⊆ −XS , i.e. the
entailment of cX and cY in S is detected (see Table 4).

The decision table is incomplete since for example in the store {X ∈
{1, 2}, Y ∈ {3, 4}} the monotone constraint X in ..max(Y) is entailed with-
out being detected such by Table 4. Only when Y is determined the con-
straint will be decided entailed (see Section 4.3).

This scheme has been implemented in the AKL-system, developed at
SICS [7], and preliminary results indicate an efficiency comparable with
clp(FD), cc(FD), and CHIP [1].

4.2 Generating entailment checking indexicals

In this section we show how to use the entailment detection in Section 4 for
checking the entailment conditions of Section 3.1. We adapt Table 2 and
Table 3 to generate anti-monotone indexicals instead of conditions, and thus
we can use the decision table (Table 4) for checking the conditions [1].

Two operators are defined, νE and νD (see Table 5 and 6), such that the
indexical 0 in νE(X, r, a0) is entailed iff the condition E(X, r, a0) is true and
the indexical 0 in νD(X, r, a0) is entailed iff the condition D(X, r, a0) is true,
which can be proven by induction over r.

Furthermore, νE(X, r, a0) and νD(X, r, a0) are anti-monotone, since t..,
..t, and t1..t2 are mapped onto anti-monotone ranges and anti-monotonicity
is preserved by unions and intersections. Thus, if E(X, r, a0) (D(X, r, a0))
is true then 0 in νE(X, r, a0) (0 in νD(X, r, a0)) is decided entailed by Table
4.

Note that 0 in νE(X, r, a0) (0 in νD(X, r, a0)) contains all variables in
the indexical X in r. So these conditions will be (re)tested each time a
variable of X in r is modified until the constraint is true or false.

Finally, let νEc (νDc) correspond to νE(X, r, a0) (νD(X, r, a0)) in the
following, where c is X in r for some X and r. Thus, Ec ∧ Ed is mapped

11

r νD(X, r, f)
t.. ..(inf (f(t))−max(X)− 1)
..t ..(min(X)− sup(f(t))− 1)
t1..t2 ..(inf (f(t1))−max(X)− 1) :

..(min(X)− sup(f(t2))− 1) :

..(inf (f(t1))− sup(f(t2))− 1)
dom(Y) νD(X,min(Y)..max(Y), f)
r1 : r2 νD(X, r1, f) & νD(X, r2, f)
r1 & r2 νD(X, r1, f) : νD(X, r2, f)
−r νE(X, r, f)
r + t νD(X, r, f ◦ at)
r − t νD(X, r, f ◦ a−t)
r mod t νD(X, r, f ◦mt)

Table 6: D(X, r, f) expressed as a range

onto 0 in νEc & νEd, Dc ∨ Dd is mapped onto 0 in νDc : νDd, Dc ∨ Ed is
mapped onto 0 in νDc : νEd, and Ec ∧Dd is mapped onto 0 in νEc & νDd.

4.3 Computing monotonicity of X in r

We now give an inductive definition of the monotonicity of X in r which
is used as the basis of an algorithm for checking the monotonicity. We use
mutually recursive definitions (Table 7 and 8) to compute when r is mono-
tone, and when r is anti-monotone. The definitions state which variables
occurring in r that must be determined before r is monotone (Mr), and
which variables in r which must be determined before r is anti-monotone
(Ar).

Intuitively, the monotonicity of a range is preserved under set arith-
metical operations, union, intersection, and inverted by the complement
operator. The monotonicity of the interval combinator t1..t2 depends on
whether the terms t1 and t2 are increasing or decreasing expressions. The
increase/decrease property of terms is preserved under addition and multi-
plication, and inverted in the second argument of subtraction and division.
If r is monotone, the expression min(r) is an increasing expression, and the
expression max(r) is a decreasing expression. If r is anti-monotone, the
expression min(r) is a decreasing expression, and the expression max(r) is
an increasing expression.

In the following we consider only linear FD terms, which simplifies the
presentation.

Let t be a linear term. The sets St (shrinking) and Gt (growing) are two
sets of variables defined by Table 7. The intuition being that if all variables
in St (Gt) are determined (constants), then t takes on decreasing (increasing)
values. If St and Gt both are empty, t denotes a unique natural number.

Let r be a range. The sets Mr and Ar are defined by Table 8. The

12

t St Gt

n ∅ ∅
t1 + t2 St1 ∪ St2 Gt1 ∪ Gt2

t ∗ n St Gt

t ∗ (−n) Gt St

t1 − t2 St1 ∪ Gt2 Gt1 ∪ St2

t/n St Gt

t/(−n) Gt St

t1 mod t2 St1 ∪ St2 ∪ Gt2 Gt1 ∪ St2 ∪ Gt2

min(r) Ar Mr

max(r) Mr Ar

Table 7: Monotonicity of linear terms

r Mr Ar

t.. Gt St

..t St Gt

t1..t2 Gt1 ∪ St2 St1 ∪ Gt2

dom(V) ∅ {V }
r0 · t (· ∈ {+,−,mod}) Mr0 ∪ St ∪ Gt Ar0 ∪ St ∪ Gt

r1 · r2 (· ∈ { : , & }) Mr1 ∪Mr2 Ar1 ∪ Ar2

−r0 Ar0 Mr0

Table 8: Monotonicity of ranges

intuition being that if all variables in Mr (Ar) are determined (constants),
then r denotes a monotone (anti-monotone) range. If Mr and Ar both are
empty, r denotes a unique set.
Example 10.

• Let r = 1..3. Then Mr = Ar = ∅.

• Let r = dom(Y). Then Mr = ∅ and Ar = {Y }.

• Let r = dom(Y) : − dom(Z). Then Mr = {Z} and Ar = {Y }.

Hence, X in r is monotone if all variables in Mr are determined and anti-
monotone if all variables in Ar are determined. The complexity of checking
the monotonicity is the complexity of the union-procedure multiplied by the
numbers of operators in r, i.e. basically O(|r|v log v), where v is the number
of variables in r.

The correctness of the tables is shown by induction on r. Furthermore,
by induction on r it can be proven that AνE(X,r,a0) = ∅ = AνD(X,r,a0). Hence,
combining Table 8 with Table 4 gives an algorithm for checking the entail-
ment conditions of section 3.

13

Observe that we do not have a complete decidability procedure for mono-
tonicity. Ranges such as dom(Y) : − dom(Y) and dom(Y) & − dom(Y)
cannot be classified until Y is determined, even though they both denote a
unique set in any store (Z and ∅ respectively).

5 Conclusion

In this paper we consider the entailment of finite domain constraints. Given
a finite domain constraint c, defined by an FD constraint, an anti-monotone
FD constraint is derived denoting a sufficient truth condition for c. We
provide an efficient algorithm for checking the entailment of anti-monotone
FD constraints.

Conditional finite domain constraints exploit entailment detection and
are shown to be sufficient for defining some non-trivial symbolic constraints.
Thus, this implies that many high-level constraints, builtins of existing CLP
systems, can be user-defined in a system such as FD while still being efficient.

Current and future research concerns the entailment, compilation, and
implementation of logical combinations of constraints, such as disjunctions
and implications of finite domain constraints.

Acknowledgements: This work has partly been financed by ACCLAIM,
ESPRIT Project 7195. We also owe Philippe Codognet at INRIA-Rocquen-
court, Seif Haridi and Torkel Franzén at SICS many thanks for their assis-
tance throughout the work. Finally, we would like to thank the anonymous
referees for their helpful recommendations.

References

[1] B. Carlson, S. Janson and S. Haridi. Programming in AKL(FD). Forth-
coming SICS Research Report, 1994.

[2] B. Carlson and M. Carlsson. Compiling Linear Integer Constraints.
Forthcoming SICS Research Report, 1994.

[3] D. Diaz and P. Codognet. A Minimal Extension of the WAM for
clp(FD). In Proceedings of the 10th International Conference on Logic
Programming, 1993.

[4] D. Diaz and P. Codognet. Compiling Constraint in clp(FD). Technical
report, INRIA-Rocquencourt, 1993.

[5] M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F.
Berthier. The Constraint Logic Programming Language CHIP. In Pro-
ceedings of the International Conference on Fifth Generation Computer
Systems, 1988.

14

[6] M. Dincbas, P. van Hentenryck, and H. Simonis. Constraint Satisfaction
using constraint logic programming. In Artifical Intelligence, vol 58,
113-159, 1992.

[7] S. Janson and S. Haridi. Programming paradigms of the Andorra Kernel
Language. In Logic Programming: Proceedings of the 1991 International
Symposium, MIT Press, 1991.

[8] M. J. Maher. Logic semantics for a class of committed choice programs.
In Logic Programming: Proceedings of the Fourth International Confer-
ence, MIT Press, 1987.

[9] W.J. Older and F. Benhamou. Programming in CLP(BNR). In Position
Papers of the First Workshop, PPCP, Newport, Rhode Island, 1993.

[10] V. A. Saraswat. Concurrent Constraint Programming, MIT Press, 1993.

[11] P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press, 1989.

[12] P. van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing
in cc(FD). Unpublished manuscript, Computer Science Department,
Brown University, 1991.

[13] P. van Hentenryck, V. Saraswat, and Y. Deville. Constraint Logic Pro-
gramming over Finite Domains: the Design, Implementation, and Ap-
plications of cc(FD). Technical report, Computer Science Department,
Brown University, 1992.

[14] P. van Hentenryck and Y. Deville. Operational Semantics of Constraint
Logic Programming over Finite Domains. In Proceedings of the 3rd
Int. Symposium on Programming Language Implementation and Logic
Programming, 1991.

15

	Introduction
	FD: A Theory of Finite Domain Constraints
	The theory
	Defining constraints in FD

	Entailment Conditions
	Entailment of indexicals
	Entailment of user defined constraints

	Entailment constraints
	Entailment detection of X in r
	Generating entailment checking indexicals
	Computing monotonicity of X in r

	Conclusion

