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Abstract
We present an abstract instruction set for a constraint solver over finite domains,
which can be smoothly integrated in the WAM architecture. It is based on the
use of a single primitive constraint X in r which embeds the core propagation
mechanism. Complex user constraints such as linear equations or inequations are
compiled into X in r expressions which encode the propagation scheme chosen
to solve the constraint. The uniform treatment of a single primitive constraint
leads to a better understanding of the overall constraint solving process and makes
possible three main global optimizations which encompass many previous particular
optimizations of “black box” finite domains solvers. Implementation results show
that this approach combines both simplicity and efficiency. Our clp(FD) system is
more than twice as fast as CHIP on average, with peak speedup reaching seven.

1 Introduction

Constraint Logic Programming (CLP) has shown to be a very active field of research
over recent years, and languages such as CHIP [10] [18] [2], CLP(R) [12] [14] or
PrologIII [7] have proved that this approach opens Logic Programming (LP) to a
wide range of real-life applications.
The basic idea of CLP [12] is to replace unification by constraint solving over a
particular domain of interest, considering the constraint solver as a “black box”
that is responsible for checking the consistency of a set of constraints and, possibly,
for reducing it into some normal form. Although this dichotomy is very important
from the theoretical point of view, and makes it possible to import many results
from LP semantics into CLP, it is not very satisfactory from the practical point of
view. It may be noted that there is a curious lack of literature about the practical
side of CLP. . .
One of the major breakthroughs of the last decade in LP has arguably been, the
definition of the Warren Abstract Machine (WAM) [21] which became a de facto
standard for the compilation of Prolog and has helped many researchers to gain
a better understanding of Prolog’s execution and to develop efficient LP systems.
Moreover the WAM proved to be flexible enough to remain the backbone of various
extensions such as Higher-Order, parallel or concurrent LP. To return to CLP,
we could but deplore the fact that the “black box” approach does not give much
information about the architecture of a real CLP system, and does not lead to the
design of an abstract machine for constraints. One of the main issues is that there
should be as many abstract machines as constraint domains and solvers. . .
We chose to focus on Finite Domains (FD), as introduced in LP by the CHIP
language, where constraint solving is done by propagation and consistency tech-
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niques originating from Constraint Satisfaction Problems [20] [15] [16]. Very close
to those methods are the interval arithmetic constraints of BNR-Prolog [4]. Happily,
a recent paper [19] broke the black box monopoly to unveil a “glass box” for FD
constraints. The basic idea is to have a single constraint X in r, where r is a range
(e.g. t1..t2). More complex constraints such as linear equations and inequations
are then defined in terms of this primitive constraint. The X in r constraint can
be seen as embedding the core propagation mechanism for constraint solving over
FD, and should be a good basis for an abstract machine for CLP(FD)1.
We have thus developed an extension of the WAM for FD based on the X in r
constraint, and we propose an instruction set to implement this constraint which is
very much more in the spirit of the WAM. It is also worth noticing that the basic
WAM architecture and data structures are left untouched, e.g. the representation
of choice points, environments and non-FD terms is not changed. Complex FD
constraints are translated at compile-time into a set of X in r constraints, which
really encodes the propagation scheme chosen to solve the constraint. This makes
it possible to express at a high level the constraint solving scheme and to change it
very simply if desired. Indeed the X in r expressions give us a language to express
propagation methods, which is obviously not the case with the black box approach
of CHIP or BNR where one has to get down to C for any change.
Also the uniform treatment of a single primitive for all complex “user” constraints
leads to a better understanding of the overall constraint solving process and allows
for (a few) global optimizations, as opposed to the many local and peculiar opti-
mizations hidden inside the black box. Hence, we have designed three simple but
powerful optimizations for the X in r constraint which encompass many previous
particular optimizations for FD constraints. Implementation results show that this
approach was sound and can be competitive in efficiency. On a traditional set of
benchmark programs, our clp(FD) engine is more than twice as fast as the CHIP
system, with peak speedup reaching seven.

The rest of this paper is organized as follows. Section 2 presents the (unique)
constraint X in r and its use to define high-level constraints. Section 3 describes
the integration of X in r in the WAM and presents the compilation scheme. It also
details what is performed when a constraint is told. Section 4 presents the results
of the implementation in the clp(FD) system. Results of a basic implementation
are first presented and analyzed; and we then propose three optimizations whose
impact is then detailed. A short conclusion and perspectives end the paper.

2 From primitive constraints to user constraints

2.1 The constraint X in r

The main idea is to use a single primitive constraint X in r, where X is a finite
domain variable and r is a range, which can be not only a constant range, e.g.
1..10 but also an indexical range using:

• min(Y) which represents the minimal value of Y in the current store,

• max(Y) which represents the maximal value of Y,

• dom(Y) which represents the whole domain of Y.
1although the authors introduced it in the context of concurrent constraint languages [17].
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The complete syntax of this (simple) constraint system is given below.

c ::= X in r (constraint)

r ::= t..t (interval range)
t.. (interval t..∞)
{t} (singleton range)
dom(X) (indexical domain)
r : r (union)
r & r (intersection)
- r (complementation)
r + t (pointwise addition)
r - t (pointwise subtraction)
r mod t (pointwise modulo)

t ::= C (parameter)
n (integer)
min(X) (indexical min)
max(X) (indexical max)
val(X) (delayed value)
t + t (addition)
t - t (subtraction)
t * t (multiplication)
t // t (division rounded by default)
t / t (division rounded by excess)
t mod t (modulo)

The intuitive meaning of such a constraint is: “X must always belong to r”. There
are some monotonic restrictions about constraints so that the range r can only
decrease cf. [19]. During computation, a constraint can succeed, fail or suspend.
For example, in the store X in 3..20, Y in 5..7:10..100 the constraint:

• X in 10..50 succeeds and the new store is:
X in 10..20, Y in 5..7:10..100.

• X in 30..50 fails.

• X in min(Y)..40 suspends and the new store is:
X in 5..20, X in min(Y)..40, Y in 5..7:10..100.

• X in dom(Y)+1 suspends and the new store is:
X in 6..8:11..20, X in dom(Y)+1, Y in 5..7:10..100.

A constraint c can be removed from the current store only if it succeeds. If c sus-
pends, it must remain in the store. Hence in the third example, X in min(Y)..40
must remain in the store as long as min(Y) can be greater than min(X). Indeed, at
each modification of min(Y), that constraint will be actived to check consistency
with the domain of X, reducing it if necessary.
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2.2 User constraints

From constraints X in r, it is possible to define high-level constraints (called user
constraints) as Prolog predicates. Each constraint specifies how the constrained
variable must be updated when the domains of other variables change. In the
following examples X, Y, Z are FD variables and C, L, U parameters (runtime constant
values).

’x=y+c’(X,Y,C):- X in min(Y)+C..max(Y)+C,
Y in min(X)-C..max(X)-C.

’x+y=z’(X,Y,Z):- X in min(Z)-max(Y)..max(Z)-min(Y),
Y in min(Z)-max(X)..max(Z)-min(X),
Z in min(X)+min(Y)..max(X)+max(Y).

’x6=y’(X,Y):- X in -(dom(Y)),
Y in -(dom(X)).

In the user constraint ’x6=y’(X,Y) the constraint X in -(dom(Y)) must be awo-
ken only when Y is bound (in a forward checking manner, cf. [11]) because it is not
monotonic (as the domain of Y decreases, its complementary increases). The most
elegant solution to deal with that phenomenon is to move to the concurrent con-
straint framework and to use an ask mechanism, but staying in the CLP approach a
simple solution is to use some well known delay mechanism (freeze, wait, . . . )[13].
In our approach this is achieved using a new indexical term val(X) which delays
the activation of a constraint in which it occurs until X is ground, i.e. its domain is
reduced to a singleton. So dif is defined as:

’x6=y’(X,Y):- X in -{val(Y)},
Y in -{val(X)}.

The propagation scheme used in the user constraint ’x=y+c’ is a partial lookahead,
namely only changes on min and max of X and Y are propagated. A full lookahead
scheme could be used by:

’x=y+c’(X,Y,C):- X in dom(Y)+C,
Y in dom(X)-C.

3 Integration of X in r into the WAM

3.1 Modifying the WAM for FD variables

Here, we detail the necessary modifications of the WAM to manage a new data
type: FD variables. They will be located in the heap, and an appropriate tag is
introduced to distinguish from Prolog variables. Dealing with FD variables slightly
affects data manipulation, unification, indexing and trailing instructions.

3.1.1 Data manipulation

FD variables, as standard WAM unbound variables, cannot be duplicated (as is
done for terms by structure-copy). For example, loading an unbound variable into
a register consists in creating a binding to the variable whereas loading a constant
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consists in really copying it. In standard WAM, thanks to self-reference represen-
tation for unbound variables, the same copy instruction can be used for these two
kinds of loading. Obviously, a FD variable cannot be represented by a self-reference,
so we must take care of this problem. When a source word Ws must be loaded in
a destination word Wd, if Ws is a FD variable then Wd is bound to Ws else Ws is
physically copied in Wd.

3.1.2 Unification

A FD variable X can be unified with:

• an unbound variable Y: Y is just bound to X,

• an integer n: equivalent to X in n..n2,

• another FD variable Y: equivalent to X in dom(Y) and Y in dom(X).

3.1.3 Indexing

The simplest way to manage a FD variable is to consider it as an ordinary unbound
variable and thus try all clauses. Obviously, doing more complex indexing based on
the actual values of the domain would be useful, e.g. for optimizing the declarative
definition of piecewise functions.

3.1.4 Trailing

In the WAM, unbound variables only need one word (whose value is fully defined by
their address thanks to self-references), and can only be bound once, thus trailed
at most once. These key properties make it possible to use a simple-entry trail.
With FD variables these two properties no longer hold and a multiple-entry trail is
needed.

Multiple-entry trail. A tagged trail is used to record the multiple values for
FD variables (e.g. min, max, . . . ). Hence we have three types of objects in the
trail: one-word entry for standard Prolog variables, two-words entry for trailing one
previous value, (n+2)-words entry for trailing n previous values.

Avoiding useless trailing. As the domain of an FD variable is gradually reduced
(in many intermediate steps), the standard (WAM) criterion for trailing would lead
to much useless trailing. Indeed, only one trailing is necessary per choice point for
an FD variable. We thus use the time stamp method of [1] which consists in adding
a new register STAMP to number the choice points3 and an extra cell per FD variable
which refers to the choice point of its last trailing. Then, an FD variable X needs
to be trailed if Stamp(X) 6= STAMP.

3.2 Data structures for constraints

3.2.1 Argument frame

An argument frame (A Frame) represents the environment in which the constraint
is called, it records addresses of FD variables and values of parameters. All the

2we will describe later how constraints are managed.
3 i.e. STAMP is incremented at choice point creation and decremented at choice point deletion.
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constraints defined in the same clause share the same A Frame. In the following
FD variables will be referred as fv(i) (Frame Variable) and parameters as fp(j)
(Frame Parameter).
For example, ’x=y+c’ will be translated into the following pseudocode:

’x=y+c’(X,Y,C):-
create a 3 elements A Frame
put X in A Frame (fv(0))
put Y in A Frame (fv(1))
put C in A Frame (fp(2))
fv(0) in min(fv(1))+fp(2)..max(fv(1))+fp(2),
fv(1) in min(fv(0))-fp(2)..max(fv(0))-fp(2).

3.2.2 Constraint frame

A constraint frame (C Frame) is created for every constraint and consists of:

• the pointer to the associated A Frame,

• the address of the FD variable which is constrained4,

• the address of the associated code.

3.2.3 FD variable frame

The frame associated to the FD variable X is divided in two main parts:

• the domain (a not empty range),

• the constraints depending on X (several distinct chains).

These two parts are not modified at the same times. Chains are created when
the constraints are installed whereas the domain can be updated during execution.
Each part has its own stamp and can thus be trailed independently.

More precisely, a range consists of:

• Type Range: range features (one word, of which only 2 bits are used: is the
range empty ? is the bit-vector used ?),

• Min: the min of the range (one word),

• Max: the max of the range (one word),

• Vec: the bit-vector associated to the range (n words), not used if the range is
an interval. It will be switched on as soon as a hole appears in the range.

Several distinct chains are used, in order to avoid useless propagation5:

• Chain Min: list of constraints depending on min(X) and not on max(X).

• Chain Max: list of constraints depending on max(X) and not on min(X).

• Chain Min Max: list of constraints depending on min(X) and on max(X).

• Chain Dom: list of constraints depending on dom(X).

• Chain Val: list of constraints depending on val(X).
4for the absentminded reader: that is X in the constraint X in r.
5for instance, it is useless to reexecute a constraint depending on min(X) when only max(X) is

changed.
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3.2.4 Registers

In order to manage the previous data structures, we need to introduce new registers:

AF : pointer to the current A Frame.
CF : pointer to the current C Frame.
CC : Continuation after Constraint.
STAMP : choice point number.
DATE : call constraint date (explained below).
T(t) : Term registers.
V(v) : Vector registers.

The CC register points the next instruction to execute after the call constraint.
There is a bank of one word term registers (T(t)) and a bank of n words vector
registers (V(v)).
Remark that the standard WAM CP and A(i) registers could be used instead of
CC, T(t) and V(v). But in that case they should be saved in the standard way
(allocate and deallocate for CP, try and retry for A(i) registers), while this
can be avoided with these special registers.
A range is stored in three T registers and one V register: T(tr)=Type Range,
T(min)=Min, T(max)=Max, V(v)=Vec (see section 3.2.3).

3.3 Compilation scheme

The compilation of a clause which contains at least one X in r constraint gives rise
to three groups of instructions:

• creating and loading the A Frame. The space is reserved at the top of the
heap and addresses of FD variables and values of parameters are loaded into
this new A Frame.

• installing a constraint. The installation code for a constraint creates and loads
a C Frame. It also initializes the appropriate chain lists for all FD variables
used by this constraint. For example, in the constraint c ≡ X in min(Y)..∞,
the installation code will add a pointer to c in the list of constraints depending
on the min of Y.

• calling a constraint. The code for a constraint consists of:

– loading parameters, indexical terms and ranges into appropriate regis-
ters. Useless loading is avoided: for instance, if a constraint uses dom(X)
and min(X), only the domain of X needs to be loaded because it contains
the min of X.

– computing the range r. The compilation of r is very easy, driven by
the constraint syntax. The syntactical tree of r is traversed bottom-up:
each leaf and each node give rise to a specific instruction. For leaves
corresponding to indexical terms (or parameters), copy instructions are
produced to set the appropriate registers from those loaded in the pre-
vious part. The final code can benefit from register optimization6.

6in our compiler we reused the register allocation written for the WAM.
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’x=y+c’: fd set AF(3,X(3)) 3 elements X, Y, C

fd value in A frame(X(0)) X is fv(0)

fd value in A frame(X(1)) Y is fv(1)

fd parameter in A frame(X(2)) C is fp(2)

fd install constraint(inst 1,X(3)) install cstr 1

fd call constraint call cstr 1

fd install constraint(inst 2,X(3))

fd call constraint

proceed

inst 1: fd create C frame(0,cstr 1)

fd install ind min max(fv(1)) uses min(Y) and max(Y)

fd proceed

cstr 1: fd ind min max(T(0),T(1),fv(1)) min(Y) and max(Y)

fd parameter(T(2),fp(2)) C

fd add(T(0),T(2)) min(Y)+C

fd add(T(1),T(2)) max(Y)+C

fd tell interval range(T(0),T(1)) X in min(Y)+C..max(Y)+C

fd proceed

inst 2: (...)

Table 1: Fragment of code generated for ’x=y+c’

– telling the constraint X in r (i.e. updating X w.r.t. r). See explanation
in section 3.4.

Appendix A summarizes the complete description of the instruction set.
Table 1 shows an example of code generated for our typical example ’x=y+c’.

3.4 Telling the constraint X in r

Here, we detail the work done to tell a constraint. Some issues will be labeled (in
italic) for later references. For a constraint X in r we have the following possible
behaviors:

If X is an integer, there are two possibilities:

• X ∈ r: success (INT Check Ok).

• X 6∈ r: failure (INT Check Not Ok).

else (X is an FD variable whose range is rX) let r’ be r ∩ rX :

• r’= ∅: failure (Empty Range).

• r’=rX (i.e. rX ⊂ r): success (False Tell (sic)).

• otherwise: (True Tell) if r’ only contains one element, X is assigned to this
value else the domain of X is replaced by r’.
In both cases propagation occurs. Namely, as the domain of X has been
modified, some constraints should be reexecuted. Here, we take advantage of
having separate constraint chains (cf. section 3.2.3). The current CC must be
pushed on the stack (local or global) for restoring it after propagation.
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It is important to note that False Tell and INT Check OK issues do not modify the
current store. So, if we can detect that the tell of a constraint will give rise to one
of these issues, it is possible to avoid it, as we will see later.
The propagation phase consists in awaking and executing a set of constraints which
could themselves enrich this set by new constraints. As the overall order of execu-
tion is obviously irrelevant for correctness, we could thus either manage an explicit
propagation stack (or bag, queue, heap,...) or handle an implicit continuation-based
execution. This is very similar to the execution of goals in logic programs where
one can choose between Prolog depth-first search and more complex handling of
(active) goals in the resolvent, as in concurrent logic languages. We have chosen
the latter and maintain an explicit propagation stack for flexibility reasons. The
small overhead induced by this scheme is largely counterbalanced by the potential
for order heuristics and optimizations (see below). Moreover, our experiments show
that we reach more quickly the solution in that way than with depth-first search.

4 Implementation results

4.1 Basic implementation

The compiler used to implement clp(FD) was developed at INRIA in 1991 [8].
Its novelty is to translate Prolog to C via the WAM. Predicates give rise to C
functions, WAM instructions to C macros. Its performances are similar to Sicstus
Prolog (version 0.6). The extension to clp(FD) gives rise to boolean C functions
for constraints.
Several traditional benchmark programs have been used:

• crypta: a cryptarithmetic on 10 variables (20 digit numbers) [18].

• eq10: a system of 10 linear equations with 7 variables.

• eq20: a system of 20 linear equations with 7 variables.

• queens: the well-known N-queens problem [18]
(N=16 with standard labeling and N=64 with first-fail principle).

• five: the five houses puzzle [18].

• cars: the car sequencing problem of [9] with 10 cars.

In all programs, labeling is done in that standard way unless otherwise stated and
only the first solution is computed.

Performances of the architecture above presented are pretty good, giving a 1.6
speedup factor w.r.t. CHIP on average. Full measurements for this implementation
and for the forthcoming optimizations can be found in appendix B.

4.2 Optimization 1

If we analyze the decomposition of tells, we note that many of them (about 75 %)
have False Tell or INT Check Ok as issues (see appendix B). A lot of False Tells
and INT Check Oks come from the fact that many constraints are “equivalent”,
so that it is not necessary to reexecute them. Intuitively, all constraints inside a
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single user constraint have the same declarative meaning and would lead to such a
phenomenon, detailed by the following example.
Consider the constraint X = Y + 5, (’x=y+c’(X,Y,5)) with a current store:

X in 5..15, Y in 1..10

giving:

X in 5..15, Y in 1..10,

X in min(Y)+5..max(Y)+5 (CX),
Y in min(X)-5..max(X)-5 (CY )

Let us now detail what is happening if the constraint X in 12..100 is told. X is
set to 12..15 and thus its min is propagated to Y via CY (Y in 7..10). Now,
as the min of Y has been modified, CX (X in 12..15) will be reexecuted giving
rise to False Tell (i.e. it does not modify the domain of X). Is is obviously useless
to evaluate X from Y because Y has just been computed from X. CX and CY are
“equivalent”.
More formally, two constraints c and c′ are equivalent if in any store S they have
the same solutions. Consider a constraint c ≡ X in r and an equivalent constraint
c′ ≡ Y in r′. Let V ∪{Y } be the set of variables on which r depends, then obviously
r′ depends on V ∪ {X}. If c has been executed due to a modification of Y then
it is useless to call c′ as it cannot reduce the domain of Y , because c and c′ are
equivalent. Otherwise (c has been executed due to some Z ∈ V ) c′ has also been
pushed on the propagation stack (due to Z). In both cases it is useless to call c′

once c has been executed.

Optimization 1: telling c, it is useless to reexecute c’ if c’ is equivalent to c.

In clp(FD), we have designed all user constraints such as linear equations, in-
equations and disequations so that all constraints in the body of a user constraint
definition are equivalent. We recall that all constraints defined in the same clause
share the same A Frame, and therefore to implement this optimization we only have
to compare the current AF with the one used by the constraint to be called.

Tells avoided by optimization 1 w.r.t. initial version are:
average: 16 %, worst case: 2 % (queens), best case: 27 % (cars).

4.3 Optimization 2

Many INT Check Oks come from the fact that it is not necessary to reexecute X in
r when X is ground (i.e. bound to an integer). This can be done if the constraints
are written in such way that when X becomes ground, domains of related variables
are reduced so that no further check of this constraint is needed7 (i.e. the constraint
succeeds).
Consider for example the constraint X 6= Y (’x6=y’(X,Y)) with a store:

X in 1..10, Y in 1..10

giving:
7of course this is the case for all user constraints defined in the system.
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X in 1..10, Y in 1..10,

X in -{val(Y)} (CX),
Y in -{val(X)} (CY )

When X is set to 5, CY is awoken and 5 is removed from the domain of Y.
Thus, the new store is:

X=5, Y in 1..4:6..10, CX , CY

Suppose now that a constraint Y=8 is told (True Tell). The propagation reexecute
CX giving rise to INT Check Ok. Since X has been set to 5, any constraint on Y
does not need to reexecute such CX .
However, reexecution can be avoided only if the variable became ground before
calling the top-level constraint and not in the current propagation.

Optimization 2: it is useless to reexecute X in r if X became ground before the
top-level call constraint.

To do this we use a new register (DATE) which is incremented at each constraint
call. When a variable becomes ground it is dated with the current date. For this
purpose a special cell in the FD variable frame is reserved.

Tells avoided by optimization 2 w.r.t. initial version are:
average: 21 %, worst case: 5 % (cars), best case: 48 % (queens).

4.4 Optimization 3

A lot of useless tells result from the fact that we have in the propagation stack
multiple occurrences of a single constraint awoken from several variables. Since the
order in which constraints are executed is irrelevant, this leads to many redundant
executions: only one instance of a constraint has to be present in the propagation
stack at any time.

Optimization 3: if a constraint is already present in the propagation stack, it is
useless to add it again.

This can be achieved efficiently without scanning the whole propagation stack by
using some simple dating technique reusing the DATE register introduced for opti-
mization 2.
Tells avoided by optimization 3 w.r.t. initial version are:
average: 18 %, worst case: 0 % (queens), best case: 30 % (eq10).

4.5 Final results

The last table in appendix B gives full statistics for all three optimizations together.
Tells avoided w.r.t. initial version are:
average: 43 %, worst case: 38 % (cars), best case: 50 % (queens).

We can now compare clp(FD) with other CLP systems over finite domains, such
as the CHIP system developed at ECRC and then COSYTEC. Exactly the same
programs were run on both systems. The machine used for clp(FD) is a Sony
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CHIP clp(FD) CHIP /
Program Time (ms) Time (ms) clp(FD)
crypta 190 120 1.58
eq10 270 140 1.92
eq20 480 220 2.18
queens 16 4520 1770 2.55
queens 64 (ff) 1580 230 6.86
five 50 20 2.50
cars 190 70 2.71

Table 2: Benchmarks (comparison with CHIP)

workstation (processor MIPS R3000), and times for CHIP (commercial version v3.1)
have been measured on a Sparc Station 1+. Both machines are given as equivalent.

The average speedup of clp(FD) w.r.t. CHIP is around a factor 2.2, with peak
speedup reaching 7 for the N-queens problem with first-fail principle (see table 2).
We can also compare clp(FD) with the CHIP compiler system [2] on the queens
program. The CHIP compiler performs in 60 ms for N=16, 780 ms for N=64 and
23300 ms for N=256. clp(FD) performs respectively in 30, 230 and 11200 ms.
Therefore clp(FD) is still more than twice as fast. However it has not been possible
to make a full comparision because we had no access to the CHIP compiler.

5 Conclusion and perspectives

We have presented an abstract instruction set for a constraint solver over finite
domains, which can be smoothly integrated in the WAM architecture. It is based
on the idea of [19] of using a single primitive constraint X in r which embeds the
core propagation mechanism, while complex constraints are compiled into X in r
expressions.
Implementation results show that this approach is sound, as it combines both sim-
plicity and efficiency. Our clp(FD) is more than twice as fast as the commercial
version of CHIP on average, with peak speedup up to a factor seven, thanks to
three main global optimizations. We have also designed a boolean constraint solver
using X in r decompositions. This system performs pretty well, being seven times
faster than the CHIP propagation-based solver and infinitely better than the CHIP
boolean unification on usual boolean benchmarks [5].
Future work will consist in integrating more complex constraints such as cardinality
and constructive disjunction, and a simple intelligent backtracking scheme on FD
constraints [6].
Perspectives also include moving to the concurrent constraint framework [17] by
defining a simple and efficient ask mechanism, and extending the constraint solver
for incremental solving in reactive systems, i.e. for an intelligent handling of addition
or deletion of constraints “from the outside” with minimal recomputation.
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A Instruction set

A.1 Interfacing with Prolog clause

fd set AF(nb arg,V(i)) reserves space, on the top of the heap, for an A Frame
whose size is nb arg. AF and V(i) point the start of the A Frame.

fd variable in A frame(V(j)) binds V(j) to a new FD variable created on top
of the heap and puts its address in the cell pointed by AF. AF is incremented.

fd value in A frame(V(j)), let w be the dereferenced word of V(j), if w is:

• an unbound variable: similar to fd variable in A frame(w).

• an integer: it is pushed on the heap and its address is stored in the cell
pointed by AF. AF is incremented.

• an FD variable: its address is stored in the cell pointed by AF. AF is
incremented.

fd parameter in A frame(V(j)) the dereference of V(j) must be an integer and
its value is copied in the cell pointed by AF. AF is incremented.

fd install constraint(install proc,V(i)) restores AF with V(i) and the con-
trol is given to the install procedure.

fd call constraint calls the constraint pointed by CF.

A.2 Installing constraints

fd create C frame(tell fv,constraint proc) creates, on the top of the heap,
a C Frame. The code is located at the address constraint proc and the
constrained variable is the tell fvth. CF points this C Frame.
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fd install


ind min
ind max

ind min max
ind dom
dly val

(fv)

adds a new element (with the content of CF) to the appropriate chain list of
the fvth variable.

fd proceed gives the control to the address pointed by CC.

A.3 Loading parameters, indexical terms and ranges

Let R(r) be the list of registers: T(tr), T(min), T(max), V(v) (see section 3.2.4).

fd parameter(T(t),fp) loads the value of the fpth parameter in T(t).

fd ind

{
min
max

}
(T(t),fv) loads the

{
min
max

}
of the fvth variable in T(t).

fd ind min max(T(min),T(max),fv) loads the min and the max of the fvth vari-
able in T(min) and T(max).

fd ind dom(R(r),fv) loads the domain (a range) of the fvth variable in R(r).

fd dly val(T(t),fv,lab else) if the fvth variable is an integer, it is copied in
T(t), else the control is given to the label lab else.

A.4 Computing ranges

fd interval range(R(r)) creates a range from a min (in T(min)) and a max (in
T(max)) (i.e. initializes T(tr), V(v) being unused, see section 3.2.3).

fd

{
union
inter

}
(R(r),R(r1)) executes R(r)←R(r)

{
∪
∩

}
R(r1).

fd compl(R(r)) executes R(r)←0..∞ \ R(r).

fd

 add
sub
mod

 in range(R(r),T(t)) executes R(r)←R(r)

 +pointwise

−pointwise

modpointwise

T(t).

fd copy V(V(v),V(v1)) executes V(v)←V(v1).

fd integer(T(t),n) executes T(t)←n.

fd



add
sub
mul

floor div
ceil div

mod


(T(t),T(t1)) executes T(t)←T(t)



+
−
∗

/default

/excess

mod


T(t1).

fd copy T(T(t),T(t1) executes T(t)←T(t1).
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A.5 Telling constraints

See section 3.4 for more details about telling X in r. We recall that the current
constraint is pointed by CF and X can be reached from the C Frame. So only r must
be provided to tell. In order to optimize the execution we distinguish the case X
in t1..t2 and the case X in r (with any r).

fd tell range(r) tells X in r where r is a range.

fd tell interval range(T(min),T(max)) tells X in r where r is an interval.

B Performances evaluation

Basic Implementation Tell decomposition
INT INT

Program Time Tell True False Check Check Empty
(ms) (#) Tell Tell Ok Not Ok Range

crypta 170 8919 2073 4087 2707 11 41
eq10 190 15746 3018 8679 4000 6 43
eq20 300 24546 5154 12497 6846 12 37
queens16 2600 64619 21132 6954 34700 834 999
five 20 566 227 52 273 14 0
cars 90 2483 402 1271 810 0 0

Optimization 1 only Tell decomposition
INT INT

Program Time Tell True False Check Check Empty
(ms) (#) Tell Tell Ok Not Ok Range

crypta 150 6897 2121 2883 1841 10 42
eq10 160 12568 3101 6750 2668 2 47
eq20 270 21625 5369 11039 5168 14 35
queens16 2600 63118 21132 6954 33199 834 999
five 20 489 227 41 207 14 0
cars 70 1796 402 958 436 0 0

Optimization 2 only Tell decomposition
INT INT

Program Time Tell True False Check Check Empty
(ms) (#) Tell Tell Ok Not Ok Range

crypta 160 7599 2073 4087 1387 11 41
eq10 170 13700 3018 8679 1954 5 44
eq20 270 21038 5154 12497 3338 11 38
queens16 1800 33481 21132 6954 3562 834 999
five 20 401 227 52 108 14 0
cars 80 2364 402 1271 691 0 0
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Optimization 3 only Tell decomposition
INT INT

Program Time Tell True False Check Check Empty
(ms) (#) Tell Tell Ok Not Ok Range

crypta 130 6517 2140 2558 1767 13 39
eq10 150 11114 3135 5538 2392 8 41
eq20 270 18134 5303 8562 4220 15 34
queens16 2650 64619 21132 6954 34700 834 999
five 20 547 227 52 254 14 0
cars 70 1949 403 1093 453 0 0

Optimizations 1+2+3 Tell decomposition
INT INT

Program Time Tell True False Check Check Empty
(ms) (#) Tell Tell Ok Not Ok Range

crypta 120 5047 2155 2239 601 11 41
eq10 140 8739 3174 4747 769 6 43
eq20 220 14483 5479 7550 1405 9 40
queens16 1770 31980 21132 6954 2061 834 999
five 20 345 227 41 63 14 0
cars 70 1546 403 910 233 0 0
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