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Evora, Portugal
spa@uevora.pt

Abstract—The Quadratic Assignment Problem is a a classical
constrained optimization problem used to model many real-life
applications. We present experiments in solving the Quadratic
Assignment Problem by means of Quantum Annealing and
Quantum-inspired Annealing. We describe how to model this
classical combinatorial problem in terms of QUBO (Quadratic
Unconstrained Binary Optimization) for implementing it on
hardware solvers based on quantum or quantum-inspired an-
nealing (D-Wave, Fujitsu Digital Annealing Unit and Fixstars
Amplify Annealing Engine). We present performance result for
these implementations and compare them with well established
metaheuristic solvers on classical hardware, such as Robust Tabu
Search and Extremal Optimization.

I. INTRODUCTION

The Quadratic Assignment Problem (QAP) is a classical
constrained optimization problem that has been studied for
many years and considered as a classical benchmark for
comparing various optimization methods. Introduced by [1]
in the late 50’s, QAP consists in considering n facilities
and n locations, with some given flows of items between
facilities and some given distances between locations. The
problem is to minimize the overall cost consisting of the
flows of items between facilities multiplied by the distances
between locations. Many real-life applications can be model
as QAP: scheduling, electronic board and microchip layout,
communication network, chemistry, data center topology, see
[2], [3] for more details. QAP is NP-hard and a large literature
has been devoted to study this problem and develop efficient
algorithms.

In this paper, we would like to use QAP to compare the
performance of new specialized hardware based on “digital”
or “quantum-inspired” annealing with respect to established
metaheuristics running on classical hardware.

Following the theoretical work of [4] and [5], Quantum
Annealing (QA) has been developed as a new method for solv-
ing combinatorial problems and hardware implementations on
quantum machines have been developed since about a decade
by D-Wave Systems [6], [7]. Less popular than the gate-based
model in quantum computing, QA has the advantage of being
less sensitive to noise and errors, and thus could be quite fit
to the current NISQ (Noisy Intermediate Scale Quantum) era.
Derived from simulated annealing [8], QA is based on the
quantum tunneling effect to cross energy barriers and thereby

avoids getting stuck in local extrema during the computation.
Although coming from very different domains, QA is related
to the Quadratic Unconstrained Binary Optimization (QUBO)
formalism which has been used in combinatorial optimization
for many years. Indeed, QUBO is the standard input language
for quantum computers such as D-Wave or NTT’s Coherent
Ising Machine [9] and also for quantum-inspired dedicated
hardware such as Fujitsu’s Digital Annealer Unit (DAU) [10]
and other systems developed by Hitachi, Toshiba, NEC and
Fixstars Amplify (sometimes referred altogether as digital
annealing).

Modeling optimization problems in QUBO and executing
them on QA hardware is an emerging paradigm for combina-
torial optimization [11], but could it be competitive with the
best classical algorithms? The current literature only offers a
partial answer to this issue as most papers about performance
evaluation and comparison of QA solvers use combinatorial
problems from graph theory (e.g., Max-Cut, Min-Cut, graph
coloring, Traveling Salesman Problem,...) that are simple to
model in QUBO and involve no or very few constraints.
Modeling and benchmarking constrained optimization prob-
lems, where the objective function has to encode both some
value to optimize and logical relations (constraints) between
the problem variables is more complex. For instance, [12]
compares a classical simulated annealing solver and three
commercial quantum-inspired solvers (Fujitsu’s Digital An-
nealing Unit, Toshiba’s Simulated Bifurcation Machine and
D-Wave’s Hybrid solver - which combines quantum and
classical computations) applied to three problems: Max-cut,
Not-All-Equal 3-SAT and Sherrington-Kirkpatrick model. On
small instances, D-Wave’s Hybrid solver performs better, but
on larger and more dense instances DAU performs better.
Simulated annealing is outperformed by all other solvers.
Small-size QAP instances are used in [13] to compare Fujitsu’s
DAU, a classical MIP solver (CPLEX) and a metaheuristic
solver (EO-QAP [14]). Fujitsu’s DAU beats CPLEX but not
the local search metaheuristic: the DAU performs better than
the sequential version of EO-QAP only in one instance out of
six, and it always remains slower than the parallel version of
EO-QAP on 32 cores [14].

The literature is thus lacking in assessing the effectiveness
of quantum or “quantum-inspired” annealing as an alternative



way to solve complex constrained optimization problems as
opposed to classical methods, in particular efficient meta-
heuristics. We would like in this paper to use the Quadratic
Assignment Problem, in term of which several real-life appli-
cations can be stated, to further investigate the use of quantum
annealing solvers for constrained optimization problems and
compare their performance with metaheuristics-based solvers
running on classical hardware.
This paper is organized as follows. Section II recalls the
Quadratic Assignment Problem and two metaheuristics for
solving it. Then Section III presents the QUBO formalism
and its relation to the Ising model and quantum annealing.
Section IV details how to encode global constraints such as
all-different in QUBO and describes how to use such
a constraint to model the Quadratic Assignment Problem in
QUBO. We finally present, in Section V, some preliminary
results obtained by implementing the QUBO models with
quantum-inspired annealing and metaheuristics. A short con-
clusion ends the paper.

II. THE QUADRATIC ASSIGNMENT PROBLEM (QAP)

Since its introduction in 1957, the Quadratic Assignment
Problem (QAP) has been widely studied and several surveys
are available [2], [3], [15], [16].

Take a set of facilities {1, · · · , n} and another of locations
{1, · · · , n}, both of size n. A flow of items between each pair
of facilities is specified, as well as a distance between each
pair of locations. The Quadratic Assignment Problem (QAP)
consists in the assignment of each facility to a location so as
to minimize the total sum of the flow-distance products.

A QAP instance of size n is defined by two n×n matrices
A = (aij) and B = (bij). There are many formulations
of QAP with different sets of variables and constraints, the
most popular being as a permutation problem, as a 0-1
quadratic problem or as Mixed Integer Linear Programming
(MILP) with different types of linearization, see [17]. In
the permutation formulation, one has to find a permutation
π = (π1, π2, . . . , πn) of (1, 2, . . . , n) that minimizes the
objective function:

F (π) =

n∑
i=1

n∑
j=1

aij · bπiπj

The A matrix represents flows between facilities and B
represents distances between location. Therefore in facility
location problems both A and B are usually symmetric but
in different settings they could be asymmetric. Indeed, QAP
can be used to model scheduling, chip placement and wiring
on circuit boards, typewriter keyboard design, communication
networks analysis, and many other applications [2], [18].

One defines the canonical form of a QAP instance as the
size n, the n × n matrix A (flows) and the n × n matrix B
(distances). Many QAP instances can be found in the QAPLIB
library [19], both synthetic and stemming from real-world
application scenarios.

Exact methods such as dynamic programming, cutting
planes, or branch & bound, can solve medium-size in-
stances, but those methods have problems with larger instances
(e.g., n > 20). Incomplete methods such as approximation
algorithms or metaheuristics, which can quickly produce good
(but sub-optimal) solutions, can cope with large-size instances.
Indeed, many metaheuristics have been successfully applied to
the QAP: tabu search, simulated annealing, genetic algorithm,
GRASP, ant colonies, etc, see for instance [3] for a general
survey. The current trend is to specialize existing heuristics,
to compose different meta-heuristics (hybrid procedures and
portfolio approaches) and to use parallelism, but no single
method outperforms all others on all benchmarks. In this paper,
we will use two metaheuristics as a basis for comparison
with quantum annealing: Robust Tabu Search (RoTS), which is
well-known and widely used for QAP, together with Extremal
Optimization (EO), which is quite simple, effective and very
different from RoTS. The following sections briefly presents
these methods, which are simple and versatile and perform
well on a variety of QAP benchmarks.

A. Robust Tabu Search for QAP: RoTS

Robust Tabu Search has been proposed several decades ago
in [20] as an extension of the Tabu Search metaheuristic [21].
Tabu Search is a neighborhood-based iterated local search
method which selects, at each iteration, the best neighbor in
order to explore the search space. So as to avoid being trapped
in local minima, Tabu Search maintains an “adaptive memory”
(the Tabu List), and forbids re-visiting a solution that is present
in the Tabu List. It is interesting to note that Tabu Search can
choose for the next iteration a “best neighbor” which in fact
degrades the current value of the objective function, so long
as it is not forbidden by the Tabu List. The Tabu List records
solutions (or, more specifically, attributes of solutions) which
are then banned for a set number of iterations (the tabu tenure).
This is an important parameter that needs to be tuned for
achieving the best performance: if the tabu tenure is too short,
the method might not be able to avoid cycling and will re-visit
previously tabu solutions, while a tabu tenure which is too long
may interfere with the diversification of the search. An aspira-
tion mechanism is thus often used in order to allow solutions
that are forbidden by the Tabu List to be chosen if they pass
a specific aspiration criterion, for instance if they provide an
improvement in the objective function above some threshold.
Robust Tabu Search specializes Tabu Search for the QAP
and considers a transposition neighborhood, i.e., solutions
are represented as permutations and the neighborhood of a
permutation corresponds to all permutations where exactly two
elements are swapped. It also provides an efficient procedure
for examining the entire neighborhood and a dynamically
changing tabu tenure for the Tabu List. Moreover, Robust Tabu
Search relies on an interesting aspiration criterion: a move can
be selected if the variables to be swapped have not occupied
their target positions over the last t iterations, t being a tuning
parameter.



B. Extremal Optimization for QAP: EO-QAP

The Extremal Optimization (EO) procedure was proposed
by Boettcher and Percus [22] as a meta-heuristic to solve
combinatorial optimization problems. It is based on the Bak-
Sneppen model of Self-Organized Criticality (SOC) and in-
spired by the self-organization that can be found in many
natural processes. Influenced by biological evolution, the key
idea of EO is to consider species with a given fitness between
0 and 1 (0 being the worst fitness) and to design an extremal
process that will progressively eliminates (or mutate) species
with the least fitness in order to achieve a state where all
species have a good fitness value (SOC). Therefore at each
iteration, the species with the worst fitness is replaced, its value
being randomly updated, and this modification will affect all
other species connected to it as their fitness value will also
be modified. Applying those general ideas to combinatorial
optimization, EO is an iterative process that will check the
current configuration (variable assignment), selects the vari-
able with lowest fitness and modify its value with a random
one. Obviously, selecting continuously the worst variable will
amount to a deterministic behavior and may lead the algorithm
to be trapped in a local minimum. This could be sidestepped by
introducing some stochasticity as follows: variables are ranked
in increasing order of fitness and a Probability Distribution
Function (PDF) over rank k is used to choose the variable to
be modified. In the original EO, a power-law PDF is used, as
follows:

P (k) = k−τ (1 ≤ k ≤ n)

This PDF has a unique parameter τ which is problem-
dependent. Indeed, a large variety of search strategies can be
implemented with different values for τ : τ = 0 will give a
random walk, while τ →∞ will give a greedy search. Giving
a good value to τ will help EO to escape from local minima,
as any variable is susceptible to mutate although the PDF
will favor the worst ones. In [22], a default value for τ is
proposed, depending on the number of problem variables n:
τ = 1 + 1

ln(n) .
Over the years, various extensions have been proposed for

the initial EO method, e.g., [23]–[25], and it has been used
for solving large-scale optimization problems such as the TSP,
graph bi-partitioning and coloring, and spin glasses problems.

EO has been recently adapted to solve QAP and found to
perform very well, as reported in [14].

III. QUBO AND QUANTUM ANNEALING

Although the roots of Quadratic Unconstrained Binary Opti-
mization (QUBO) go back to pseudo-Boolean optimization in
the late 60’s, it was defined as a general modeling language for
combinatorial problems only about 15 years ago [26]. The key
interest of QUBO lies in the fact that it is very simple but also
quite versatile and able to model a variety of combinatorial
problems. Moreover, its similarity with the Ising model from
statistical physics is an important aspect that will naturally
connect with quantum annealing.

About a decade ago, [27] showed that many classical NP
problems can be represented as Ising models and thus as
QUBO. Indeed, many combinatorial optimization problems
can be modeled as QUBO, e.g., graph-based problems (col-
oring, Max-Cut, Vertex Cover, Max-Clique, Maximum Inde-
pendence Set), assignments or knapsack Problems, etc, see for
instance [28], [29].

A. QUBO and the Ising Model

A QUBO problem consists of a vector of n Boolean
variables x1, ..., xn and a quadratic expression to minimize:∑

i≤j

qijxixj

Thus a QUBO problem can be represented by a vector x
of n Boolean variables and a n × n square matrix Q with
coefficients qij . The matrix Q can be given in symmetric or
upper triangular form, without loss of generality. Besides, a
linear part can be included, as xi = x2i always holds for
Boolean variables.

The QUBO formalism is very similar to the Ising model, that
is used in statistical mechanics as a model of ferromagnetism.
The Ising model is based on discrete variables that represent
atomic spins that can have two possible states: +1 or -1.
Interactions between neighboring spins is represented by a
graph structure, e.g., a lattice. In the Ising model, the energy
function, i.e., the Hamiltonian, is given by :

H = −
∑
i

hiσi −
∑
i,j

Jijσiσj

where the coefficients hi represent the bias on the spin σi
and the coefficients Jij represent the strength of the coupling
between spins σi and σj .

To transform an Ising model into a QUBO model, we
just need to consider for each spin variables σi a Boolean
variable xi defined by xi = σi+1

2 . Conversely, an optimization
problem modeled as QUBO can be transformed into an
Ising Hamiltonian, and the ground states of this Hamiltonian
will therefore represent the minimal solutions of the QUBO
problem. Those ground states can be computed by adiabatic
quantum evolution in a physical device, an instance of which
is quantum annealing [30].

B. Quantum Annealing

About two decades ago, [4] and [5] developed the theory
of Quantum Annealing (QA) and D-Wave inc. started about
one decade ago to develop computers based on QA with
qubits implemented by superconducting Josephson junctions,
see [31] for full details about those concepts in quantum
statistical physics and a complete historical timeline. As de-
scribed earlier, an optimization problem modeled as a QUBO
can be transformed as an Hamiltonian in the Ising model.
A QA computation starts by placing the initial system of
qubits in a ground state (i.e., of minimal energy) that is
easy to prepare and then progressively adding the problem
Hamiltonian corresponding to the optimization problem while



gradually reducing the original Hamiltonian corresponding to
the initial state. If the modification of the energy landscape
is slow enough and there is no energy exchange with the
outside world, the Quantum Adiabatic Theorem ensures that
the system will remain in a ground state and thus that the final
state has minimal energy. Therefore, the qubits in the final state
represent a minimal solution of the optimization problem.

From an algorithmic point of view, QA can be seen as a
variant of simulated annealing which differs by using quantum
tunneling in order to escape local minima. Quantum tunneling
is a phenomenon from quantum physics which is implemented
in quantum annealing hardware and that makes it possible for
the system to escape local minima by going through energy
barriers as long as they are not too wide.

C. Quantum-inspired Annealing

Complementing the quantum computers developed by D-
Wave, the idea to simulate quantum annealing on classical
dedicated hardware has give rise in the last few years to the
domain of quantum-inspired or digital annealing, see [11] for
a complete list of such Ising machines. Several dedicated hard-
ware systems exists, such as Fujitsu’s Digital Annealer Unit
(DAU) [10] and Hitachi’s CMOS Annealing Machine [32].
Other systems include Fixstars Amplify Annealing Engine
(AE) [33] based on a cluster of Graphics Processing Units
(GPU), Toshiba’s Simulated Bifurcation Machine (SBM) [34]
and NEC Vector Annealer based on their own SX-Aurora
TSUBASA Vector Engine [35].

All these systems use QUBO as their input language.

IV. THE QUADRATIC ASSIGNMENT PROBLEM IN QUBO

Although the formulation of the QAP in QUBO is well-
known [13], [29], [36], we will present it in this section in a
slightly different manner and with an emphasis on the notion
of constraints, as exemplified in the Constraint Programming
paradigm [37]. Constraint expressions can be introduced in
QUBO models as quadratic penalties in the objective func-
tion, with an adequate encoding, and we will also give an
intuitive meaning to the quadratic monomials that compose
the penalties corresponding to each constraint.

A. Encoding Basic Constraints in QUBO

The penalty corresponding to a specific constraint can be
defined by a quadratic expression which has its minimal value
when the constraint is satisfied, e.g., an expression equal to
zero upon constraint satisfaction and equal to a positive value
otherwise. This penalty somehow represents the degree of
violation of the constraint. Such a technique has indeed been
in use for many years in constraint-based local search [38],
[39].

Penalty expressions for a basic set of pseudo-Boolean con-
straints over a few Boolean variables can be found in [29]. For
instance, the penalty for a constraint x ≤ y will be x−xy and
for x+y = 1 it will be 1−x−y+2xy. Each penalty is added
to the objective function with a specific coefficient. When
many different constraints are combined into a single objective

function, finding a good combination of penalty coefficients
for combining the constraints can indeed be a problem it itself,
see [40] for a concrete example and discussion on this topic.

Beyond simple pseudo-Boolean constraints, more complex
constraints can also be encoded in QUBO models, e.g., the
One-Hot constraint from the QA literature [41], which is
equivalent to the exactly-one global constraint in the
Constraint Programming community. This constraint enforces
that, among n boolean variables (x1, . . . , xn), only one will
take value 1 while all the others will be 0. It can be modeled
by the pseudo-Boolean constraint

∑n
i=1 xi = 1.

This constraint can be expressed in QUBO by the quadratic
penalty (

∑n
i=1 xi − 1)2, which should be minimized down to

zero in order for the constraint to be satisfied, and which can
be simplified to:

−
n∑
i=1

xi + 2
∑
i<j

xixj (1)

The first term of this equation will try to maximize the
number of xi equal to 1, while the second term prevents any
two xi and xj to be equal to 1 at the same time, thereby
ensuring that a single variable xi will be equal to 1.

B. The All-Different Constraint in QUBO

QAP is a permutation problem and each solution must
represent a permutation over {1, . . . , n}. This property can
be expressed by the all-different constraint developed
in Constraint Programming paradigm [42], [43].

Consider n variables x1, . . . , xn with values in {1, . . . , n},
the constraint all-different (x1, · · · , xn) states that each
variable has a value different from all others, thus (x1, . . . , xn)
is a permutation of (1, . . . , n). To integrate this constraint in a
QUBO model, we need to encode integer variables by Boolean
variables and add corresponding constraints between these
variables [44]. For each integer variable xi, let us consider
n Boolean variables xij such that xij = 1 if xi has value j
and xij = 0 otherwise. To enforce that each integer variable is
represented correctly, i.e., that it has a single value, we need
“One-Hot” constraints of the form

∑n
j=1 xij = 1. Moreover,

in order to enforce the all-different constraint we also
need to have “column constraints” of the form

∑n
i=1 xij = 1

Therefore the all-different over integers will be repre-
sented by 2× n pseudo-boolean constraints over Booleans:

∀i ∈ {1, n}
n∑
j=1

xij = 1 ∀j ∈ {1, n}
n∑
i=1

xij = 1

As detailed in [44], the quadratic penalties corresponding to
all pseudo-Boolean constraints (cf. Equation 1) can be added
together and simplified in order to give the overall penalty for
the all-different constraint :

Pall-diff = −
n∑

i=1,j=1

xij+

n∑
k=1

∑
i<j

xkixkj+

n∑
k=1

∑
i<j

xikxjk (2)



The first term will push to set to 1 as many variables xij as
possible (n is the maximum), while the two other terms will
forbid any original integer variable to have two values and any
two different original integer variables to have the same value.

C. QAP in QUBO

For a QAP instance of size n consisting of two n × n
matrices F = (fij) and D = (dij), we consider a QUBO
model with n2 Boolean variables xik such that xik = 1 if
facility i is at location k and xik = 0 otherwise.

The objective function representing the flows between fa-
cilities is then expressed by:

H0 =

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

fijdklxikxjl

As each facility has to be assigned to a different location,
a penalty corresponding to an all-different constraint
must be added (cf. Equation 2), with a penalty coefficient p.
The final objective function to minimize is thus:

HQAP = H0 + pPall-diff

V. EXPERIMENTAL RESULTS

We first present in this section our experiments in executing
QAP on the D-Wave quantum annealing machine and then we
detail and compare the performance of QAP on digital an-
nealing systems based on dedicated hardware (Fujitsu Digital
Annealing Unit and Fixstars Amplify Annealing Engine) and
metaheuristics on classical hardware (RoTS and EO-QAP), for
both medium- and large-size instances.

A. D-Wave

Although each QUBO variable corresponds to a qubit in
a QA system such as the D-Wave computers, it is difficult to
implement models for which the maximal number of variables
is close to the maximal number of qubits available, e.g., 5600
qubits for the D-Wave Advantage. Indeed, D-Wave systems do
not implement a complete graph (fully connected) between
qubits and therefore some qubits are also needed to encode
extra “couplers” (connections between qubits). More precisely,
in the D-Wave 2000X computer the Chimera connection graph
allows for each qubit to be connected to 6 neighbors, while in
the newer D-Wave Advantage the Pegasus connection graph
allows for each qubit to be connected to 15 neighbors.

A transformation called minor embedding [45], [46] is thus
needed in order to map a QUBO problem and the connection
graph between variables (created by the different quadratic
monomials in the objective function) on the physical hardware
graph. The missing hardware connections can be simulated
by using additional qubits, creating thus chains of physical
qubits (bound to have identical values) for representing a
single logical qubit. Thus, depending on the complexity of the
QUBO model, the number of logical qubits (QUBO variables)

available is different from the number of physical qubits. This
depends in particular on the number of different quadratic
monomials in the objective function, as each monomial will
correspond to a connection between two different qubits. For
instance on the D-Wave Advantage (5600 qubits), the maximal
size of a complete (fully connected) graph between qubits, that
can be embedded, is limited to 177 logical qubits [47].

For QAP, the QUBO models require n2 variables for a
problem of order n. In our experiments, we considered two
small instances of order 12 that were also used in [13]: rou12
and had12. These instances should be tractable in theory
as they are modeled with 144 Boolean variables, thus below
the limit of 177 logical qubits. Other instances would require
more than 300 logical qubits. As the QUBO model uses an
all-different constraint implemented as 2× n One-Hot
constraints on n variables, it thus requires many point-to-point
couplers in the QA hardware. Minor embedding of the QUBO
model has to be performed for implementation on D-Wave
hardware, and we used for this the heuristic tools from the D-
Wave software suite. It has to be noted that those methods do
not perform exhaustive search and thus can fail to find a minor
embedding even if one theoretically exists. For QAP of order
12 with 144 boolean variables, the QUBO models with One-
Hot constraints requires too many auxiliary qubits and the D-
Wave software tools fail to provide a correct minor embedding.
When run on the QPU, they produce infeasible solutions that
do not satisfy the permutation constraint. Indeed, as minor
embedding amounts to the creation of a chain with several
physical qubits for encoding a single logical qubit (in order
to provide more connections for this qubit), chain breaks can
occur, leading to an infeasible solution. Only QUBO models
of very small QAP instances can run on the QPU and provide
feasible solutions which satisfy the permutation constraint.

A possible solution to this issue is to use post-processing
methods in order to recover feasible solutions from infeasible
ones. For instance the bit-flip heuristic algorithm [48] makes
it possible to obtain feasible solutions up to size 20 but
with a total run-time of several seconds, thus at the price
of efficiency. Alternatively, the decomposition-based Hybrid
Solver can be used on D-Wave systems. This solver mixes
execution on classical hardware and on the QPU (for smaller
subproblems) and can cope with problems up to 20,000
variables. D-Wave also proposes the QBSolv solver, a Tabu
Search solver running entirely on classical hardware. It is,
however, difficult for those solvers to reach the optimal
solution and only QBSolv could do so within an extended
running time, whereas the Hybrid Solver could not. For
rou12, QBSolv will achieve a sub-optimal solution with an
Average Percentage Deviation (APD) of 3% in 0.45 seconds
and reach the optimum in 50 seconds. For had12 it reaches a
suboptimal solution with an APD of 2% in 1.25 seconds and
the optimum in 84 seconds. With the Hybrid Solver, a
suboptimal solution for rou12 with an APD of 6% is reached
in 3 seconds (of which 30 ms of QA on the QPU), and a
suboptimal solution with an APD of 3.5% in 90 seconds,
while for had12 a suboptimal solution with an APD of 2%



is reached in 3 seconds and a suboptimal solution with an
APD of 1% is reached in 90 seconds. As we shall see in the
next section, those optimal solutions can be found in a few
hundred of milliseconds with metaheuristic solvers or digital
annealing.

B. Digital Annealing and Metaheuristics

In this section we present the performance results for the
two classical metaheuristics methods presented in Section II
and for the quantum-inspired digital annealers. As digital
annealers implement (in hardware or software) the complete
connection graph between all variables and can cope with
65,536 QUBO variables (Fixstars Amplify AE) or 100,000
QUBO variables (Fujitsu Digital Annealer version 3), they can
take on larger instances of QAP than those experimented with
on the D-Wave system. We implemented the QAP models
on the digital annealers with the Amplify SDK, which is a
middleware library for Ising machines. This python package
provides basic functions to create QUBO matrices and to call
several different solvers that are available as web services, in
particular Fixstars Amplify AE, Fujitsu DA3 and D-Wave. In
this way, we may use the same code (and thus create the same
QUBO matrix) for both the Fixstars Amplify AE and Fujitsu
DA3 and simply change the call to the adequate solver.

Table I details the performance results for metaheuristics
and digital annealers on QAP instances. These where chosen
to be of medium size (20 to 40 integer variables, therefore 400
to 1600 Boolean variables) and neither too easy nor too hard,
i.e., taking a few seconds to solve in [14].
Entries for Extremal Optimization (EO-QAP) and Robust Tabu
Search (RoTS) were taken on a Dell Precision 7820 with a
Xeon Gold 6140 CPU at 2.3GHz using 64GB of RAM on a
single core and correspond to the time needed to reach the Best
Known Solution (BKS) of the problem instance1. Timing for
DA3 is for the Fujitsu Digital Annealer Unit version 3 and AE
for the Fixstars Amplify Annealer Engine (GPU-based), and
considers only in the solving time (i.e., it does not include the
web access time). Timings are in seconds and are the average
of 50 runs for EO-QAP and RoTS and of 10 runs for DA3
and AE. When the solver cannot reach the optimal solution
within 1 minute in every run, we indicate the percentage of
times in which it does, within the time limit as well as the
Average Percentage Deviation (APD), given by the average
of the relative deviation percentages, which may be computed
as 100× AvgSol−BKS

BKS , where AvgSol is the average over 10
obtained solutions.

Those results are obtained with the default parameters for
RoTS and some parameter tuning for EO-QAP. For digital
annealers, the Amplify SDK that we used does not provide any
parameter tuning for the solver, although for the DA3 some
tuning is possible when directly programming the hardware,
e.g., for controlling the temperature cooling schedule or the
parallel tempering. It could also be interesting to consider
pausing in the annealing process [49]. This might possibly

1Source code can be obtained at: https://github.com/didoudiaz/QAP-codes/

gain a factor of 2, but would most likely not qualitatively
change the conclusions of this experiment.

For medium-size QAP it is clear that, at this stage, clas-
sical metaheuristics perform better than digital annealing on
dedicated hardware. However, digital annealers achieve hon-
orable results and the performance of this dedicated hardware
approach is likely to significantly improve over the next few
years.

C. Large-size QAP instances

Recently, the developers of Fujitsu’s DAU reported in [50]
experiments with large-size QAP instances (n ≥ 100) and
we can thus compare these results with the metaheuristics
methods. Timings are in seconds and are the average of 50
runs for EO-QAP and RoTS and of 10 runs for DA3. On
most large-size QAP instances, the solvers cannot find the
optimal solution in a reasonable time (i.e., a few minutes), and
therefore we report (as is done in [50]) the result obtained after
a timeout of 300 seconds in the form of the APD (percentage
over the optimal value) on the average of the runs. These
performance results are shown in Table II, where entries for
Extremal Optimization (EO-QAP) and Robust Tabu Search
(RoTS) are taken on a Dell Precision 7820 with a Xeon Gold
6140 CPU at 2.3GHz using 64GB of RAM on a single core
and entries for the DA3 are taken from [50]. As those large-
size instances are hard to solve, it is necessary to tune the
solver parameters in order to have good performance. This is
done for RoTS and EO-QAP and we use, particularly for EO-
QA, a restart strategy with short restarts on several instances.
Unfortunately, [50] does not provide any information regarding
parameter tuning for the DA3.

On these large-size instances the results are more mixed
than for the mid-size instances. We can see that EO-QAP is
much faster than other solvers on esc128, but also that DA3
is better on sko100e as it can find the optimal solution all
the time whereas other solvers cannot. Finally, RoTS is better
with the larger instances (tho150, tai150b and tai256c),
as on those instances no solver can find the optimal solution
before the timeout of 300 seconds, but RoTS comes closest to
the optimum, then comes DA3 and lastly EO-QAP.

Although it is very interesting to observe that the per-
formance of dedicated digital annealing hardware and of
sequential execution of metaheuristics methods on a desktop
computer are more or less equivalent, it should be noted that
better performance can be achieved for QAP with metaheuris-
tics methods on readily available parallel hardware, see for
instance the results of [51] on a 64-core machine.

VI. CONCLUSION

We have detailed how to model the Quadratic Assignment
Problem (QAP) in QUBO, so as to solve it with quantum
annealing. Our aim was to compare – on medium-size and
large-size QAP instances – the performance of quantum and
quantum-inspired annealing hardware, relative to metaheuristic
solvers running on classical hardware.

https://github.com/didoudiaz/QAP-codes/


Problem RoTS EO-QAP AE DA3

time time success time APD success time APD

had12 0.00 0.00 100% 0.30 - 100% 10.1 -
rou12 0.00 0.01 100% 0.15 - 100% 3.08 -
nug18 0.01 0.03 100% 2.24 - 0% 60.00 1.24%
esc32d 0.06 0.01 100% 1.17 - 0% 60.00 2.00%
rou20 0.11 0.69 30% 48.80 - 0% 60.00 0.93%
tai20a 0.21 1.03 0% 60.00 0.6% 0% 60.00 2.10%
chr22a 0.61 0.50 0% 60.00 4.2% 0% 60.00 3.48%
lipa40a 0.12 0.24 0% 60.00 2.3%

TABLE I
METAHEURISTICS VERSUS QUANTUM-INSPIRED ANNEALERS

ON MEDIUM-SIZE QAP INSTANCES (TIMINGS IN SECONDS)

Problem RoTS EO-QAP DA3 [50]

success time APD success time APD success time APD

sko100e 25% 268.9 0.003% 0% 300.0 0.081% 100% 108.6 -
esc128 100% 14.10 - 100% 0.12 - 100% 8.0 -
tho150 0% 300.0 0.047% 0% 300.0 0.334% 0% 300.0 0.145%
tai150b 0% 300.0 0.221% 0% 300.0 1.312% 0% 300.0 0.467%
tai256c 0% 300.0 0.155% 0% 300.0 0.236% 0% 300.0 0.212%

TABLE II
METAHEURSITICS VERSUS QUANTUM-INSPIRED ANNEALERS

ON LARGE-SIZE QAP INSTANCES (TIMINGS IN SECONDS)

These problems turn out to be too big for direct execution
on quantum hardware (D-Wave) which cannot implement the
complete connected graph between qubits. The problem con-
straints (permutation / all-different) end up requiring
excessive additional qubits, even for a small QAP of order 12.

The current generation of quantum-inspired / digital an-
nealers, such as Fujitsu DAU or Fixstars Amplify AE can
cope and solve larger QAP instances. However, for medium-
size instances, classical metaheuristic solvers such as Robust
Tabu Search or Extremal Optimization perform better and
are clearly faster in finding optimal solutions. For large-size
QAP instances, the performance of Fujitsu’s Digital Annealer
(version 3) is comparable to that of the metaheuristic solvers,
being globally not as good as Robust Tabu Search but better
than Extremal Optimization.

Therefore, QUBO models and digital annealing can be used
for modeling and solving complex constraint optimization
problems and, as the hardware systems improve in the near
future, it might become a very competitive technology, when
compared to metaheuristics methods on classical hardware.

For quantum annealing, the fact that on D-Wave machines
the execution time for an annealing sample is 130 microsec-
onds (annealing + readout + cooling) in a system with 5000
qubits is encouraging, should the performance scale to larger
systems. Indeed, if quantum annealers extend the number of
available qubits by one or two orders of magnitude over the
current systems, this computational approach will most likely
challenge the best metaheuristic solvers on classical hardware.
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