
Parallel Performance of Declarative
Programming using a PGAS Model

Rui Machado1,2, Salvador Abreu2, and Daniel Diaz3

1 Fraunhofer ITWM, Kaiserslautern, Germany
rui.machado@itwm.fhg.de

2 Universidade de Évora and CENTRIA, Portugal
spa@di.uevora.pt

3 University of Paris 1-Sorbonne, France
Daniel.Diaz@univ-paris1.fr

Abstract. Constraint Programming is one approach to declarative pro-
gramming where a problem is modeled as a set of variables with a domain
and a set of relations (constraints) between them. Constraint-based Local
Search builds on the idea of using constraints to describe and control local
search. Problems are modeled using constraints and heuristics for which
solutions are searched, using Local Search. With the progressing move to-
ward multi and many-core systems, parallelism has become mainstream
as the number of cores continues to increase. Declarative programming
approaches such as those based on constraints need to be better under-
stood and experimented in order to understand their parallel behaviour.
In this paper, we discuss experiments we have been carrying out with
Adaptive Search and present a new parallel version of it based on GPI,
a recent API and programming model for the development of scalable
parallel applications. Our experiments on different problems show inter-
esting speed-ups and, more importantly, a better understanding of how
these gains are obtained, in the context of declarative programming.

Keywords: Constraint Programming, Local Search, Parallel Program-
ming

1 Introduction

There is an inevitable paradigm shift towards multicore technologies where par-
allelism is now omnipresent. In recent systems, parallelism spreads over several
systems levels and heterogeneity is growing on the node as well as on the chip
level. Data must be maintained across a hierarchy of memory levels and most
applications and algorithms are not ready to take full advantage of the available
capabilities.

Parallel programming is usually a difficult and error-prone task. Although
MPI [11] has become the de facto standard for parallel programming, there
has been a demand for programming models with a flexible threads model and
asynchronous communication. PGAS (Partitioned Global Address Space) pro-
gramming models have been emerging as a valid alternative to MPI.



One of the great features of declarative programming approaches is their
potential simplification of the development of parallel programs, relieving the
programmer from error-prone aspects related to explicit control, which can be
very difficult to handle with parallel programming, while retaining enough ex-
pressive power to model complex real-world problems. One declarative approach
is Constraint Programming : a problem is modeled as a set of variables over some
domain and a set of relations (constraints) is required to hold between them.
Program execution consists in finding a solution to (i.e., solving) the stated
constraint problem. The solving process can use different methods, one of which
is Local Search where, instead of exploring the complete search space, heuristics
are used to guide the search to portions of the search space where solutions are
more likely to be found. Local Search is based on the simple idea of “searching”
by iteratively moving from one candidate solution to one of its neighbours. De-
spite its simplicity and effectiveness to handle hard problems, in order to solve
large problem instances, parallelism should be introduced to cope with the large
running time.

Our general aim is not only to simplify the use of parallelism of current
systems with a declarative approach based on constraints but, at the same time,
exploit that parallelism to tackle large and difficult problems.

We have been developing parallel designs for both complete (propagation-
based [14]) and local search constraint solvers. This article reports on the latter.

The contribution of this paper is twofold: a new parallel design for the Adap-
tive Search method based on a PGAS Model and a better understanding of
its parallel behaviour, easily extended to Local Search algorithms in general. We
present and evaluate our new design based on GPI, showing interesting speed-up
gains on benchmarks known to have scalability issues. We discuss the results and
provide a deeper interpretation of the parallel behaviour of Adaptive Search in
particular and of Local Search methods in general, based on some characteristics
of the benchmarks.

The rest of the paper is organized as follows: in section 2 we present GPI
and its programming model, hightlighting its important features. Section 3 pro-
vides some background on the Adaptive Search algorithm and section 4 focuses
on its parallelization. In section 5, we detail our parallelization strategy based
on GPI and in section 6 we show the obtained results and compare it to the
previous implementation. Section 7 examines and interprets our experimental
findings, correlating them with the characteristics of the problems. Finally, sec-
tion 8 presents a short conclusion and perspectives of future work.

2 GPI

The Partitioned Global Address Space (PGAS) is a parallel programming model
which has been seen as a good alternative to the established MPI. The PGAS
approach offers the programmer an abstract shared address space model which
simplifies the programming task and at the same time facilitates data-locality,
thread-based programming and asynchronous communication. GPI (Global ad-

2



dress space Programming Interface) [9]4 is a PGAS API for parallel applications
running on clusters. The thin communication layer delivers the full performance
of RDMA-enabled5 networks directly to the application without interrupting the
CPU. Fig. 1 depicts the architecture of GPI.

Global Memory

Node 1 Node 2 Node n

Local Memory

MCTP threads

Global Memory Global Memory

The Global Programming Interface (GPI)

DMA interconnect

MCTP threads MCTP threads

Local MemoryLocal Memory

Fig. 1. GPI

The local memory is the internal memory available only to the node and allo-
cated through typical allocators (e.g. malloc). This memory cannot be accessed
by other nodes. The global memory is the partitioned global shared memory,
available to other nodes, and where shared data should be placed. The DMA
interconnect connects all nodes and is the underlying mechanism for most GPI
operations. On each node, the Manycore Threading Package (MCTP) is used to
take advantage of all cores present on the system. MCTP is a threading package
based on thread pools that abstracts the native threads of the platform and a
component of GPI.

The GPI core includes different functionalities but in the context of this work,
the most important functionality is the read/write of global data.

Two operations exist to read and write from global memory independent
of whether it is a local or remote location. One important point is that those
operations are one-sided that is, only the peer that issues such operation takes
part in it. This is different from a two-sided scheme (message passing) where the
peer that sends (sender) has a corresponding peer (receiver) that needs to issue
a receive operation. Moreover, this functionality is non-blocking and completely
off-loaded to the interconnect, allowing the program to continue its execution

4 GPI was previously known as Fraunhofer Virtual Machine (FVM).
5 RDMA - Remote Direct Memory Access.

3



and hence take better advantage of CPU cycles. The data movement does not
require any intermediate buffers and protocols to maintain those buffers. If the
application needs to make sure the data was transferred (read or write), it needs
to call a wait operation that blocks until the transfer is finished and asserting
that the data is usable.

3 Adaptive Search

Local Search is based on the simple idea of “chasing” a solution by iteratively
moving from one candidate (call this a “configuration”) to one of its neighbours.
The neighbourhood of a configuration is the set of configurations that can be
obtained by applying a move. A move is a local change (hence the name Local
Search).

The mechanism used to select a neighbour and thus the definition of what
constitutes a neighbourhood is the main issue that differentiates between differ-
ent local search methods. In general, it is problem dependent and is related to
the definition of the objective function.

The Adaptive Search method [4] is one of many different local search methods
and has proved to be very efficient in the types of problems where it was tested.
It is a generic, domain-independent constraint-based local search method.

This meta-heuristic takes advantage of the structure of the problem in terms
of constraints and variables and can guide the search more precisely than a single
global cost function to optimize, such as for instance the number of violated
constraints. The algorithm also uses a short-term adaptive memory in the spirit
of Tabu Search [12] in order to prevent stagnation in local minima and loops.
This method is generic, can be applied to a large class of constraints (e.g. linear
and non-linear arithmetic constraints, symbolic constraints, etc) and naturally
copes with over-constrained problems.

The input of the method is a problem in CSP format, that is, a set of variables
with their (finite) domains of possible values and a set of constraints over these
variables. For each constraint, an “error function” needs to be defined; it will
give, for each tuple of variable values, an indication of how much the constraint is
violated. For instance, the error function associated with an arithmetic constraint
|X − Y | < c, for a given constant c ≥ 0, could be max(0, |X − Y | − c).

Adaptive Search relies on iterative repair, based on variable and constraint
error information, seeking to reduce the error on the worst variable so far. The
basic idea is to compute the error function for each constraint, then combine for
each variable the errors of all constraints in which it appears, thereby projecting
constraint errors onto the relevant variables. Finally, the variable with the highest
error will be taken and its value will be modified. In this second step, the well
known min-conflict heuristic is used to select the value in the variable domain
which is the most promising, that is, the value for which the total error in the
next configuration is least. In order to prevent being trapped in local minima, the
Adaptive Search method also includes a short-term memory mechanism to store
variables to avoid (variables can be marked Tabu and “frozen” for a number

4



of iterations). It also integrates reset transitions to escape stagnation around
local minima. A (partial) reset consists in assigning fresh random values to some
variables (also randomly chosen). A reset is guided by the number of variables
being marked Tabu. As in any local search method, it is also possible to restart
from scratch when the number of iterations reaches a given limit.

4 Parallel Adaptive Search

When parallelizing an algorithm one aims at identifying hotspots and sources
of parallelism. As with most meta-heuristics, in Adaptive Search these sources
of parallelism are essentially: (1) the inner loop of the algorithm i.e., computing
and combining the errors of variables and selecting the variable with highest
error and (2) the search space of the problem.

The problem with exploiting the inner loop of the algorithm is its granularity:
it is too fine-grained and the associated overhead might come at a too high cost.

The second main source of parallelism is the search space (domain) of the
problem itself. Theoretically, this domain could be decomposed into several dis-
joint partitions, to be explored in parallel and without dependencies. However,
in practice several issues arise with this: each partition is in general still too
large for a sequential execution and, more importantly, the search space is not
uniformly valid and the exploration should avoid areas that are known to lead
to poor solutions. Moreover, it is hard and expensive to control and maintain
the search conducted in the different partitions since a Local Search algorithm
only has a local view of the search space. One example is the class of problems
that have the best solutions clustered in a certain ’zone’ of the search space.
In this case, the algorithm should converge to that zone but in case of parallel
execution avoid too much redundant work.

The Adaptive Search method has already been subject to some research on its
parallel behaviour. Previous work on parallel implementations of the Adaptive
Search algorithm have mostly focused on independent multiple-walks. Recal that
independent multiple-walks are the simplest approach to parallel local search.
A walk is carried out by each processor without any communication between
them. Processors (search threads) start at a different solution and perform their
own walk, intersecting or not, with walks from other processors. The same or
different algorithms can be used to perform the walk, with the same or different
parameters.

In [6], the authors present a parallel implementation of the Adaptive Search
algorithm for the Cell/BE, a heterogenous multicore architecture. The system
includes 16 processors (the SPEs6) where each one starts with a different random
initial configuration. The PPE7 acts as the master processor, waiting for the
message of a found solution. For this number of processing units, the results
were very promising, achieving linear speed-up for most problems.

6 Synergistic Processing Element
7 Power Processor Element

5



Further work with Parallel Adaptive Search continued to follow the same
approach with no communication between workers, but more interestingly, con-
centrating on cluster systems with a larger number of cores.

In [2], the authors experiment and investigate the performance of a multiple
independent-walk search on a system with up to 256 cores. The parallelization
was done with MPI and involves the introduction of a “communication step”
which tests if termination was detected (a solution was found) and terminates
the execution properly. The results are relatively modest in terms of parallel
efficiency, far for the ideal speed-up, which is in contrast with the results obtained
at a smaller scale (on the Cell/BE, ie. with up to 16 cores). This points out
the need for better alternative strategies in order to better exploit large-scale
parallelism.

Since the independent multiple-walk approach still leaves space for improve-
ment in terms of parallel efficiency and scalability for some problems, new ways
to take full advantage of parallel systems must be found.

In [1], the authors experiment with more complex strategies, where processes
exchange messages resembling branch-and-bound methods where the bound is
exchanged between all participants. In their work, two alternatives are attempted:
exchanging the cost of the current configuration of each process and the current
cost plus the number of iterations needed to achieve that cost. Unfortunately,
neither approach achieves better results than an independent multiple-walk.

5 Adaptive Search with GPI

Previous work with parallel Adaptive Search provides some groundwork to build
upon and has shown that some benchmarks exhibit scalability problems when
run on a large number of cores.

GPI appears to be, à priori, an interesting match to the problem of paralleliz-
ing Adaptive Search: local search methods work with local information, trying
to progress and converge on solutions in a global search space, requiring little
global information. However, as demonstrated by previous work, some problems
exhibit low parallel efficiency and communication and cooperation becomes re-
quirements to obtain good scalability. The communication with GPI is based on
one-sided primitives that ought to benefit the local view on a global search space,
as it allows threads to cooperate asynchronously. Moreover, communication is
very efficient as GPI exploits the full performance of the interconnect with little
or no CPU intervention. Hence, we continue to explore ways to further improve
the parallelization of the Adaptive Search algorithm, exploiting GPI and its pro-
gramming model, with the objective of getting some further benefits. But more
importantly, to find mechanisms, concepts or limitations that are general.

In general, we can define the following objectives:

– further investigate and understand the behaviour of parallel Adaptive
Search on different problems.

6



– investigate the possibilites given by GPI and devise more sophisticated
mechanisms for the parallel execution of Adaptive Search, improving its
performance

– identify the, possibly new, problems generated by the previous point.

The new parallel version of Adaptive Search based on GPI includes two variants
which we name TDO (Termination Detection Only) and PoC (Propagation of
Configuration).

The TDO variant implements the simple independent multiple-walk and
serves mostly has our basis for comparison. First, with the existing MPI ver-
sion, making sure that the implementation is correct and the performance is
as expected. Second, to allow us to measure the improvement (if any) obtained
with the more complex PoC variant. The PoC variant introduces more commu-
nication and sharing between working threads, by means of GPI primitives and
its threaded model, but it is our expectation that this overhead will be offset by
the performance gain.

The next sections present the two different variants in more detail.

5.1 Termination Detection Only

The variant with Termination Detection Only (TDO) is straightforward and
implements the idea of independent multiple-walks: all available cores execute
the sequential version of the Adaptive Search algorithm.

We name this variant “Termination Detection Only” because it amounts to
a termination detection problem i.e., detecting the termination of a distributed
computation. Termination Detection is in itself a subject of much research and
several algorithms have been and continue to be proposed( [7, 10, 15]).

In the case of the Parallel Adaptive Search method, we are interested in
detecting termination as soon as one of the participating threads has found a
solution: we want to get the first (earliest) solution. The implementation of this
variant is simple as it only requires a triggering mechanism.

The GPI implementation follows a line similar to the previous work with
MPI. Whenever a thread finds a solution, it triggers termination by writing to
its peers that it has found a solution. Thus, the wall-clock time of the parallel
execution is the time taken by this fastest thread.

Other threads must detect termination. This entails introducing a communi-
cation step in the internal loop of the Adaptive Search algorithm. This is required
since there is no other way for a GPI instance to react on an remote event (i.e.,
termination) other than with communication. In this step, a check for termi-
nation is done on a particular memory address that is written on termination
emission as described above. The communication step introduces some overhead
that needs to be kept low, thus it is only executed every k iterations.

5.2 Propagation of configuration

The experiments in previous work and with the TDO variant have found that
the simple approach to parallelization, namely, the independent multiple-walk, is

7



insufficient to obtain parallel efficiency on some problems especially when exper-
imenting with a large number of cores. Moreover, exchanging simple information
such as the cost leads to no improvement. This result goes to show that this is
not a reliable metric, at least not by itself: it just says that cost C (better than
the current cost) can be achieved but says nothing about when and how to reach
it.

Hence, we aim at communicating more, and more meaningful information, in-
troducing cooperation. By cooperation we mean mechanisms that allow threads
to share information about their state and thus benefit from the collective search.
Also, we would like to exploit the potential and benefits of GPI and its program-
ming model (one-sided communication, no wait for communication, global access
to data, threaded model, etc.) This can be achieved, for instance, by moving to-
wards algorithms which resort to more communication than in previous cases.

One of the most powerful aspects of Local Search is its simplicity. Because of
this, it is not obvious what could be considered as the meaningful information to
be shared and communicated to other threads. One promising candidate which
hasn’t yet been tried is the whole current configuration.8 The final configuration
represents the solution when the algorithm stops.

The current implementation of the Adaptive Search method deals only with
permutation problems and thus, a configuration is the permutation vector of the
problems’ variables.

Similarly to other approaches to parallelization which introduce cooperation,
several important questions arise, namely:

1. Who does the communication?
2. When to do the communication?
3. How to do the communication?
4. What to communicate?

Our approach, which we call Propagation of Configuration (PoC), aims at
answering these questions and giving a better understanding of how coopera-
tion can help with increasing the scalability of Local Search in general and the
Adaptive Search method in particular.

Who does the communication?

Note that on each node, there are as many threads as the number of availble
cores. Communication is performed between nodes, by reading or writing the
global memory of GPI. Hence, to answer this question we consider if, for each
node, all or only a single thread actually performs communication with the other
nodes.

There are potential advantages and disvantages with both options. If all
threads perform communication, any shared resources must be protected by a
mutual exclusion mechanism, which might suffer from high contention. Moreover,

8 Because the term solution is sometimes misleading, we refer to the current solution
as a configuration.

8



when all threads perform communication, a lot more pressure on the intercon-
nect follows, increasing the parallel overhead and with possibly a lot of redun-
dant communication happening (the same configuration being passed around
several times). On the other hand, there will be a rapid progress towards the
best promising neighbourhood, intensifying the search. Of course, this can be
positive but can also become dangerous since most of threads might get trapped
in a local minimum or poor quality neighbourhood. A good trade-off between
intensification and diversification needs to be achieved.

If a single master thread communicates, the effects are potentially the oppo-
site: less intensification but also less contention, less pressure on the interconnect
and less redundant work.

Preliminary tests have made it clear that the best option is the one with a
single communicating thread since it reduces the parallel overhead. Moreover,
with GPI, all threads in a single node benefit immediately from the results
obtained by the master thread without any messages exchange.

When to do the communication?

The first possible answer to this question is to follow the same strategy as with
the Termination Detection Only variant: introduce a communication step and
perform communication every k iterations. The value of k has a very significant
impact on performance: with a low value (e.g., k = 10), a strong intensification
of the search is achieved but with the danger that threads might give up too soon
on a promising neighbourhood. With a high value of k, we avoid that danger but
less intensification will be achieved since less information will be propagated.

The other option is to not interrupt the normal flow of the algorithm for
communication, letting the search progress normally and independently until a
local minimum is achieved. Only at this point the configuration is propagated
and possibly used. One danger, however, is if threads do not hit local minima
that often, the propagation of configuration will not progress and some threads
might never see an up-to-date configuration. A solution to this problem is to still
have communication every k iteration, where threads only use the propagated
information when they are “in trouble” i.e., they hit a local minimum. However,
this option increases the overhead by adding the extra communication step in
some iterations.

In principle the second option might seem more promising as no disturbance
is caused when the algorithm is progressing well. But the aforementioned danger
that the propagation of configurations won’t progress can have the consequence
that there won’t be any benefit from the communication scheme when compared
to the simple TDO variant. Prelimary tests on a problem with low number of
local minima (Magic Squares) confirmed this fact. Hence and based on this
reasoning, we opted to have a communication step. Our PoC variant combines
termination detection and the propagation of configurations in a single step that
happens every k iterations and we focus the experimentation on finding an good
value for k.

9



How to do the communication?

With this question, we consider a single alternative. Since we aim at large scale
executions (hundreds to thousands of nodes), we need an efficient approach.
Communication is done along a tree-based topology, where each node only com-
municates with its parent and children (if any). Currently, a binary tree is used
but this can be parametrized at initialization. At each communication step, the
propagation of the configuration is done either up (to parent) or down (to the
children) the tree. This only happens if a configuration was propagated from the
children (in case of the up direction) or from the parent (down direction). The
propagation of the communication behaves then like a wave, up and down the
tree, with possibly different configurations being propagated at different points
of the tree and contributing to some diversification.

Communication is performed by using GPI one-sided primitives. A thread
posts a write operation and returns immediately to work. The configuration to
be propagated will be directly written to the memory of the remote node, asyn-
chronously, without any acknowledgement and overlapped with the algorithm’s
computation. The remote node on the other hand, on its communication step,
checks if a valid configuration was written to its memory, decides how to act on
it and propagates its decision further.

We consider this single alternative since it gives us a good balance between
intensification and diversification and because having a tree-based topology pro-
vides an efficient pattern to achieve communication scalability, with good local-
ity. The final objective is to have a communication step with low overhead and
here GPI provides us with mechanisms to do so.

What to communicate?

The Adaptive Search method (as many other Local Search methods) is very
simple and includes very few elements that can be communicated.

The proposed option has been already mentioned: to communicate a full
configuration. To this, we only add the cost of the configuration as it is the
metric to evaluate the configuration, and we need only compute it once.

Still, the question remains of which configuration to communicate. In our de-
sign the best configuration (with better cost) is communicated. At a communi-
cation step, a thread decides whether to propagate its own current configuration
or the propagated configuration(s) it received from its neighbour(s).

Communicating configurations is advantageous because configurations im-
plicitly contain more information about the global state of the search: as the
best configurations are being propagated, threads that are currently on poorer
neighbourhoods might benefit from moving to the best ones. With the stochastic
behaviour of Adaptive Search and enough diversification, the whole search pro-
cedure can be performed on the best neighbourhoods and, hopefully, converge
faster onto good solutions.

10



6 Experimental Results

In this section we present the obtained results using a few benchmark problems.

– costas-array: the Costas Array problem [5],
– all-interval: the All Interval Series problem (prob007 in CSPLib [8]),
– magic-square: the Magic Square problem (prob019 in CSPLib).

The experiments were conducted on a cluster system where each node includes
a dual Intel Xeon 5148LV “Woodcrest” (i.e., 4 CPUs per node) with 8 GB
of RAM. The full system is composed of 620 cores connected with Infiniband
(DDR). We performed our experiments on the system using up to 256 cores on
some problems and 512 cores on others. The difference is due to the fact that
the system is heavily in use and it is hard to get access to the full cluster.

Note that Adaptive Search, as many other Local Search methods, has a
stochastic behaviour to achieve diversity on the search. To benchmark such be-
haviour, several executions must be done and averaged. In our experiments we
ran each problem 100 times in order to obtain meaningful results.

 16

 32

 64

 128

 256

 16  32  64  128  256

S
p
e
e
d
-u

p

No. of cores

Costas Array 20

GPI
MPI

Fig. 2. CAP(20) on 256 cores (64 nodes)

We compare both GPI vari-
ants (TDO and PoC) with
the MPI implementation, as
a basis for comparison. Fig-
ure 2 depicts the obtained
results for the Costas Array
problem (CAP) with n=20.

As already observed in [3],
the CAP shows an almost
optimal scalability using an
independent multiple -walk
with no cooperation. We can
observe that our implemen-
tation obtains similar, although
slight better, results. This is

the expected result since both approaches (TDO and MPI) are equivalent: com-
munication is only used for detecting termination. Nevertheless, it is a confir-
mation that our implementation performs as expected.

Although we aspired at obtaining even better results with the PoC variant
(possibly super linear) for this problem, our experiments showed that this variant
performs much worse than the simple TDO variant and thus we only present
the speedup obtained with GPI using the TDO variant.

Figure 3 depicts the obtained results for the Magic Square problem up to 512
cores. For this problem we present the speedup obtained with the TDO and PoC
variants and compare it with the MPI version. The GPI TDO variant presents
again, as expected, results similar to the MPI version.

11



 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 16  32  64  128  256  512

S
p
e
e

d
-u

p

No. of cores

Magic Square 200

GPI
MPI

PropConf (k=1000)
PropConf (k=10)

Fig. 3. MS(200) on 512 cores (128 nodes)

The Magic Square problem is one
of the problems that results in
disappointing scalability when us-
ing the simple independent multiple-
walk and therefore a major tar-
get for improvement with more
sophisticated approaches. Indeed,
for this problem, our PoC vari-
ant improves the performance and
scales better as we increase the
number of cores used.

We wanted to answer the ques-
tion of when to do communica-
tion: as we mentioned, in our

preliminary experiments it turned out that the best approach is to have a com-
munication step every k iterations where the value of k is decisive. Surprinsingly,
for this problem, a lower value of k (k=10 in contrast to k=1000) improves scal-
ability by a factor of 2, achieving a speedup of 97 with 512 cores. Still a low
parallel efficiency but a very significant improvement over the other options and
variants.

The results we obtained for the last problem, the All Interval series (n=400),
are shown in Figure 4.

 0

 5

 10

 15

 20

 25

 30

 16  32  64  128  256

S
p
e
e
d
-u

p

No. of cores

All Interval

GPI
MPI

PropConf(k=1000)

Fig. 4. AI(400) on 256 cores (64 nodes)

The All Interval Series bench-
mark is also one of the prob-
lems where good scalability
was hard to reach when us-
ing a large number of cores.
In Figure 4, one may observe
this fact where both the MPI
and GPI TDO versions reach
a modest speedup factor of
20 and 25, respectively (with
256 cores). Our PoC variant
however, performs much worse
than the TDO variant at a
low number of cores but it
improves as we increase the

number of cores, hinting that this variant can be of advantage if we increase
the number of cores and the problem size. In Fig. 4 we only depict the obtained
results for the PoC variant with k = 1000 since, for this benchmark, it is the best
value. In contrast to the Magic Squares benchmark, a lower value of k results in
a much worse performance.

12



7 Discussion

The experimental results presented large differences in how the different prob-
lems benefit from parallelism and the implemented variants. One of our main
objectives is to investigate and understand why this happens.

In order to be able to draw some conclusions on our experiments, it is im-
portant to characterize the chosen problems from different perspectives. We do
so, resorting to different information such as the number of iterations and lo-
cal minima. This characterization will give us a basis to better understand the
problems at hand and ultimately explain our results.

Table 1 presents the obtained values for acquired information when running
some instances of the previously presented problems. This information is the
following:

Problem The problem instance.
Iterations The number of iterations required to find a solution.
Local Minima The number of local minima found.
Resets The number of partial resets performed (not full restart).
Same var / Iteration The number of times there was more than one candidate vari-

able (highest error value) to be chosen from.

This information allows us to better understand how does the Adaptive Search
algorithm progress towards a solution, the neighbourhood structure and extract
further information (e.g., number of local minima per iteration).

Local Same var/

Problem Iterations Minima Resets Iteration

Magic Square 200 413900 25864 3 23.36

Costas 18 389932 204024 204024 1.00

Costas 19 3364807 1714299 1714299 0.99

All Interval 200 11229 495 495 5.97

All Interval 400 41122 1422 1422 9.19

Table 1. Information collected for different problems instances.

From Table 1 we can see that the different problems exhibit a significantly
different behaviour. Magic Square performs a low number of partial resets when
compared to the total number of iterations or to the number of identified local
minima. On the other hand, it is the problem where the number of candidate
variables per iterations (Same var/Iteration) is highest, meaning that at each
iteration there are several possible moves towards the next configuration.

The Costas Array problem exhibits a completely different behaviour. In this
case, the number of identified local minima is very large (almost every second

13



iteration finds a local minimum) and the number of partial resets is also very
high, coincident with the number of local minima i.e., at each local minimum
found, a partial reset is performed. Also the number of possible moves at each
iteration is close to 1.

All Interval is yet another kind of problem. Here, the number of resets is
as with the CAP equal to the number of local minima but these happen much
less often. The number of possible variable choices or moves is higher than 1,
meaning that some diversification could be achieved.

If we relate this characterization of problems with the obtained experimen-
tal results, some conclusions can be drawn in order to better understand the
parallelization behaviour of this algorithm or, more concretely, how much can it
benefit from a communication scheme such as the one we designed.

We argue that one critical aspect is the density of the neighbourhood of a
configuration or the set of possible moves, which define transitions between con-
figurations. Since we are propagating configurations we can look at our problems
at hand according to this aspect. If a problem has a dense neighbourhood or, in
other words, the set of possible moves at each transition is (much) larger than
one, each of these moves can be explored in parallel. Thus, when a promising
configuration is propagated and several moves are possible and explored in par-
allel, the probability that one of these moves leads to a faster path towards an
optimal solution increases.

Another important aspect is the number of local minima and resets and how
both relate. A problem that finds a large number of local minima before encoun-
tering an optimal solution benefits less from processing a configuration which
seems promising. This configuration is heuristically promising but in reality this
information is less meaningful than it should. Similarly, a problem with a high
number of partial resets suffers from the same problem.

Looking back at our experimental results with the different problems, we can
better understand a) the difference in scalability and b) the improvement factor
brought by the PoC variant to some problems.

In the Magic Square problem, each configuration has a dense neighbour-
hood and benefits from the parallel exploration of different moves. Thus, the
PoC variant improves the performance and scalability of the algorithm. When
a working thread adopts a propagated configuration, it will define its own path
from that configuration and differently from one other thread that receives that
same promising configuration. Moreover, this problem has a low number of local
minima and resets meaning that paths from one (initial) configuration towards
an optimal solution are a series of transitions from neighbour configurations.

The Costas Array Problem exhibits optimal scalability with the independent
multiple-walk MPI version or with our TDO variant and this is already per
se satisfactory. On the other hand, it performs worse with the PoC variant:
propagating a configuration is only a source of parallel overhead and will limit
the search allowing less diversification. A propagated configuration will allow,
on average, a single move and two threads taking the same configuration results
in redundant work. This is also probably unfruitful since the CAP is one of the

14



problems with a high number of local minima and resets. This also explains
the good scalability using the TDO variant, where increasing the number of
cores allows covering more of the total search space together with the fact that
solutions for this problem are well spread over it.

Finally, the All Interval Series problem shows a mixed behaviour. Similarly
to the CAP, the larger number of local minima found and same number of re-
sets point to the same situation: there is less benefit from taking a propagated
configuration since its meaningfulness is low. The PoC variant only introduces
unnecessary overhead and this could explain the much worse performance at a
lower number of cores. On the other hand, and similarly to the Magic Square
benchmark, there is more than one possible move, on average i.e., some diver-
sification can be achieved. With a large enough number of cores, the parallel
overhead can be amortized by the gain obtained with this diversification. This
could be the reason for the steeper curve for the PoC variant on Fig. 4. Of course,
with further experiments we will be able to understand this better.

In summary, problems that follow a trajectory with a single possible move
won’t benefit from a communication scheme that propagates the best current
configuration(s). Also, if a large number of local minima is found and partial
resets are required in the same number, the expectation for improvement in
performance is rather low. On the contrary, problems where configurations have a
denser neighbourhood benefit from a cooperation scheme such as the PoC variant
where the full configuration is communicated and improvements in performance
are expected.

8 Conclusion

In this paper we presented our work on the parallel implementation of the Adap-
tive Search method using an alternative programming model. GPI is an API
designed for high-performance and scalable parallel applications. We aimed at
investigating and understanding the behaviour of Adaptive Search in a parallel
setting, focusing on different problems particularly those that, in previous work,
showed scalability problems when targeting a large number of cores. GPI and its
programming model allowed us to design a new communication and paralleliza-
tion scheme which in our experimental evalution allowed a gain of a factor of
2 in terms of speedup for some problems. More importantly, it provided deeper
insight and understanding on the parallelization of Local Search methods given
different problems with disparate characteristics such as the density of a config-
uration neighbourhood, the number of local minima and partial resets.

We point out that GPI performs well and allows us to adopt more commu-
nication -intensive schemes, which supports the claim that solving local search
problems is a good use case for GPI.

In the future, we intend to examine our design and conclusions with other
larger problems and experiment with more sophisticated parallelization schemes.
One possible direction is, instead of using promising information (configurations,
cost, statistics) directly, to act on its complement, avoiding redundant work

15



and thereby cover as much as possible from the search space since this is the
main source of parallelism. Another direction is to revisit the modeling of each
problem knowing that it will be executed in parallel; this is relevant as the current
models are designed and optimized for sequential execution. Models designed
with parallelism in mind, even if less efficient in serial execution, will benefit at
scale as more cores are used in the solving process.

One of our potential final goals is the design of a new Local Search algorithm
based on Adaptive Search and more amenable to parallelization, building upon
the experiences presented in this paper.

Ultimately, the work described herein will be integrated with MaCS, a GPI
port of the PaCCS hierarchical distributed constraint solving system [13], pro-
viding additional insight on how to reach good parallel performance on CSPs.

Acknowledgements This work was partly supported by Fundação para a
Ciência e Tecnologia under grant PTDC/EIA-EIA/100897/2008 (HORUS).

References

1. Yves Caniou and Philippe Codognet. Communication in parallel algorithms for
constraint-based local search. In IPDPS Workshops, pages 1961–1970, 2011.

2. Yves Caniou, Philippe Codognet, Daniel Diaz, and Salvador Abreu. Experiments
in parallel constraint-based local search. In Peter Merz and Jin-Kao Hao, edi-
tors, EvoCOP, volume 6622 of Lecture Notes in Computer Science, pages 96–107.
Springer, 2011.

3. Yves Caniou, Daniel Diaz, Florian Richoux, Philippe Codognet, and Salvador
Abreu. Performance analysis of parallel constraint-based local search. In Pro-
ceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming, PPoPP ’12, pages 337–338, New York, NY, USA, 2012.
ACM.

4. P. Codognet and D. Diaz. Yet another local search method for constraint solving.
Stochastic Algorithms: Foundations and Applications, pages 342–344, 2001.

5. John Costas. A study of detection waveforms having nearly ideal range-doppler
ambiguity properties. Proceedings of the IEEE, 72(8):996–1009, 1984.

6. Daniel Diaz, Salvador Abreu, and Philippe Codognet. Targeting the cell broadband
engine for constraint-based local search. Concurrency and Computation: Practice
and Experience, 24(6):647–660, 2012.

7. Edsger W. Dijkstra, W. H. J. Feijen, and A. J. M. van Gasteren. Derivation of a
termination detection algorithm for distributed computations. Inf. Process. Lett.,
16(5):217–219, 1983.

8. Ian P. Gent and Toby Walsh. Csplib: A benchmark library for constraints. In CP,
pages 480–481, 1999. http://www.csplib.org.

9. Rui Machado and Carsten Lojewski. The fraunhofer virtual machine: a com-
munication library and runtime system based on the rdma model. In Computer
Science-Research and Development, volume 23(3), pages 125–132, 2009.

10. Friedemann Mattern. Algorithms for distributed termination detection. Distributed
Computing, 2:161–175, 1987. 10.1007/BF01782776.

11. MPI Forum. MPI: A Message-Passing Interface Standard. Version 2.2, September
4th 2009. available at: http://www.mpi-forum.org (Dec. 2009).

16



12. Panos M. Pardalos, Leonidas S. Pitsoulis, Thelma D. Mavridou, and Mauricio
G. C. Resende. Parallel search for combinatorial optimization: Genetic algorithms,
simulated annealing, tabu search and grasp. In proceedings of IRREGULAR, pages
317–331, 1995.

13. Vasco Pedro, Rui Machado, and Salvador Abreu. A Parallel and Distributed Frame-
work for Constraint Solving. In Proceedings of the 1st Workshop on Parallel Meth-
ods for Constraint Solving (PCMS 2011), 2011.

14. F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming, vol-
ume 2. Elsevier Science, 2006.

15. Vijay A. Saraswat, Prabhanjan Kambadur, Sreedhar B. Kodali, David Grove, and
Sriram Krishnamoorthy. Lifeline-based global load balancing. In PPOPP, pages
201–212, 2011.

17


