

MIC2003: The Fifth Metaheuristics International Conference 14-1

An Efficient Library for Solving CSP with Local Search

Philippe Codognet* Daniel Diaz†

* University of Paris 6, LIP6/IA

8 rue du Capitaine Scott, 75015 Paris, FRANCE
Philippe.Codognet@lip6.fr

† University of Paris-I, CRI

C1407, 90 rue de Tolbiac, 75 634 Paris, FRANCE
Daniel.Diaz@univ-paris1.fr

1 Introduction

In the last years, the application of local search techniques for constraint solving started to raise
some interest in the Constraint Programming community, We proposed some years ago a
domain-independent local search method called Adaptive Search for solving Constraint
Satisfaction Problems (CSP) [1]. This method has now been fully re-implemented as a C-based
framework library available as freeware (both source code and several benchmark examples) at
the URL : http://contraintes.inria.fr/~diaz/adaptive/. This new implementation is more generic
and efficient than the previous version used in [1], but is dedicated to permutation problems, that
is : all variables have a same initial domain and are subject to an implicit all-different constraint.
Many classical problems fall into this category.

We have designed a new meta-heuristics that takes advantage of the structure of the problem in
terms of constraints and variables and can guide the search more precisely than a global cost
function to optimize (such as for instance the number of violated constraints). We also use an
adaptive memory in the spirit of Tabu Search in order to prevent stagnation in local minima and
loops. This method is generic, can apply to a large class of constraints (e.g. linear and non-linear
arithmetic constraints, symbolic constraints, etc) and naturally copes with over-constrained
problems. Preliminary results on some classical CSP problems (Nqueens, magic squares,
all-interval series, number partitioning, etc) show very encouraging performances. The input of
the method is a problem in CSP format, that is, a set of variables with their (finite) domains of
possible values and a set of constraints over these variables. We also need, for each constraint, an
error function that will give an indication on how much the constraint is violated. This is very
similar to the notion of “penalty functions” used in (continuous) global optimization. For instance
the error function associated to an arithmetic constraint X - Y ≤ C will be max(0, |X-Y|-C).
Adaptive search relies on iterative repair, based on variables and constraint errors information,

Kyoto, Japan, August 25–28, 2003

http://contraintes.inria.fr/~diaz/adaptive/

14-2 MIC2003: The Fifth Metaheuristics International Conference

seeking to reduce the error on the worse variable so far. The basic idea is to compute the error
function of each constraint, then combine for each variable the errors of all constraints in which it
appears, therefore projecting constraint errors on involved variables. Finally, the variable with the
maximal error will be chosen as a "culprit" and thus its value will be modified. In this second step
we use the well-known min-conflict heuristics and select the value in the variable domain that has
the best temptative value, that is, the value for which the total error in the next configuration is
minimal. In order to prevent being trapped in local minima, the Adaptive Search method also
includes an adaptive memory à la Tabu Search (variables can be marked Tabu and “frozen” for a
few iterations), but also integrates possible restart-based transitions to escape stagnation around
local minima. Restarts are partial and are guided by the number of variables being marked Tabu.

In our new implementation stochastic moves can also occur to escape from plateaux1, with a
given probability. This last action has proved to be very effective on performances for
benchmarks where many local minima with large plateaux occur, such as the magic square
problem presented in section 5, for which a ten time speedup factor can be achieved with an
adequate tuning (6%) of unconditional escape when a plateau is encountered.

2 The Adaptive Search Algorithm

The input of the method is a problem in CSP format, that is, a set of variables with their (finite)
domains of possible values and a set of constraints over these variables; Constraint Solving and
Programming has proved to be very successful for Problem Solving and Combinatorial
Optimization applications, by combining the declarativity of a high-level language with the
efficiency of specialized algorithms for constraint solving, borrowing sometimes techniques from
Operations Research and Numerical Analysis [2].

Consider a n-ary constraint c(X1, ... , Xn) and domains D1, ... , Dn for variables {X1, ... , Xn}. An
error function fC associated to the constraint c is simply a real-valued function from D1 × ... × Dn
such that fC (X1, ... , Xn) has value zero if c(X1, ... , Xn) is satisfied. The error function will in fact
be used as a heuristic value to represent the degree of satisfaction of a constraint and will thus give
an indication on how much the constraint is violated. This is very similar to the notion of “penalty
functions” used in (continuous) global optimization. That is, this error function will be an
(approximation of) the distance of the current configuration to the closest satisfiable region of the
constraint. For instance the (exact) error function associated to an arithmetic constraint X - Y ≤ C
will be max(0, |X-Y|-C). Observe that, as the error is only used to heuristically guide the search,
we can use any approximation when the exact distance is difficult (or even impossible) to

1 We will used the french spelling for the plural (“plateaux”) instead of the english plural of the
french word (“plateaus”) …

Kyoto, Japan, August 25–28, 2003

MIC2003: The Fifth Metaheuristics International Conference 14-3

compute, such as approximating a (set of) region(s) by a convex hull.

Adaptive search relies on iterative repair, based on variables and constraint errors information,
seeking to reduce the error on the worse variable so far. The basic idea is to compute the error
function of each constraint, then combine for each variable the errors of all constraints in which it
appears (possibly normalized), therefore projecting constraint errors on involved variables.
Finally, the variable with the maximal error will be chosen as a "culprit" and thus its value will be
modified. The neighborhood consists in all possible modifications of the value of this variable,
that is, in permutation problems, in all possible swaps with other variable/value pairs. The best
neighbor (smallest value for the overall cost function) is then selected to compose the next
configuration.
In order to prevent being trapped in local minima, the adaptive search method also includes an
adaptive memory as in Tabu Search : each variable leading to a local minimum is marked and
cannot be chosen for the few next iterations. It is worth noticing that conversely to most
Tabu-based methods we mark variables and not couples <variable,value>, and we do not
systematically mark variables when chosen in the current iteration but only when they lead to a
local minimum.

Before detailing the basic iteration of the adaptive search algorithm, we need to add some extra
control parameters to tune the search process, in particular to handle (partial) restarts. In order to
avoid being trapped with a large number of Tabu variables and therefore no possible
diversification, we decide to randomly reset a certain amount of variables when a given number of
variables are Tabu at the same time. Thus the reset limit is the number of simultaneous Tabu
variables to reach in order to perform a (partial restart). On restart, depending on the reset
percentage, we randomly reset a certain ratio of variables to random values.

Input :

Problem given in CSP form :

 a set of variables V={V1, V2,…, Vn} with associated domains of values
 a set of constraints C={C1, C2,…, Ck} with associated error function
 a combination function to project constraint errors on variables
 a (positive) cost function to minimize

Some tuning parameters :

 T : Tabu tenure (number of iterations a variable will be frozen on local minima)
 RL : reset limit
 RP : reset percentage
 Max_I : maximal number of iterations before total restart

Kyoto, Japan, August 25–28, 2003

14-4 MIC2003: The Fifth Metaheuristics International Conference

 Max_R : maximal number of total restarts

Output :

a sequence of moves (modification of the value of one of the variables) that will lead to a solution
of the CSP (configuration where all constraints are satisfied) if the CSP is satisfied or to a
quasi-solution of minimal cost otherwise.

Algorithm :

Iteration = 1
Restart = 1
Tabu_Nb = 0
repeat
Start from a random assignment A of variables in V
Opt_Sol = A
Opt_Cost = cost(A)
 Repeat

1. Compute errors of all constraints in C and combine errors on each variable
(by considering for a given variable only the constraints on which it appears)
2. select the variable X (not marked Tabu) with highest error
3. evaluate costs of possible moves from X
4. if no improving move exists

then mark X as Tabu until iteration number : Iteration + T
 Tabu_Nb = Tabu_Nb + 1
 if Tabu_Nb ≥ RL
 then randomly reset RP variables in V (and unmark those Tabu)
else select the best move and change the value of X accordingly

to produce next configuration A’
 if cost(A’) ≤ Opt_Cost
 then Opt_Sol = A’
 Opt_Cost = cost(A’)

 until a solution is found or Iteration ≥ Max_I
until a solution is found or Restart ≥ Max_R
output (Opt_Sol, Opt_Cost)

3 Escaping Plateaux

The above algorithm does not perform any special action to in case of plateaux, that is, when the

Kyoto, Japan, August 25–28, 2003

MIC2003: The Fifth Metaheuristics International Conference 14-5

selected variable has no strictly improving moves in the neighborhood but has some neighbor(s)
with equal cost value. In some of our benchmark, we have found experimentally that the number
of neighbors with cost values equal to that of the selected variable is around N, for a problem with
N variables and thus neighborhoods of size N2. We have thus decided to add a stochastic
component that will perform as follows when a plateau is encountered :

 with probability 1-p : escape from plateau (mark current variable as Tabu and randomly
choose another variable, then change its value)

 with probability p : choose a neighbor on the plateau

We have experimentaly found that the best results are achieved witha value of p around 95%.

4 A Sample Benchmark : Magic Squares

The magic square puzzle consists in placing on a NxN square all the numbers in {1,2,..., N2} such
as the sum of the numbers in all rows, columns and the two diagonal are the same. It can therefore
be modeled in CSP by considering N2 variables with initial domains {1,2,..., N2} together with
linear equation constraints and a global all_different constraint stating that all variables should
have a different value. The constant value that should be the sum of all rows, columns and the two
diagonals can be easily computed to be N(N2+1)/2.

The instance of adaptive search for this problem is defined as follows. The error function of an
equation X1 + X2 + ... + Xk = b is defined as the value of X1 + X2 + ... + Xk - b. The combination
operation is the absolute value of the sum of errors (and not the sum of the absolute values, which
would be less informative : errors with the same sign should add up as they lead to compatible
modifications of the variable, but not errors of opposite signs). The overall cost function is the
addition of absolute values of the errors of all constraints The method will start by a random
assignment of all N2 numbers in {1,2,..., N2} on the cells of the NxN square and consider as
possible moves all swaps between two values. We thus have at each iteration a dynamic
neighborhood consisting of N2 configurations.

We report in the following the performances results on several NxN instances (remark that a NxN
instance means N2 variables with domains of size N2) for :

 the Localizer++ C-based local search library [2],
 the basic adaptive search algorithm (with no stochastic escape on plateaux)
 the improved adaptive algorithm with 0.94 probability of staying on the plateau (if any)

Results are given in seconds, for a PC with pentium-III 800 Mhz processor.

Kyoto, Japan, August 25–28, 2003

14-6 MIC2003: The Fifth Metaheuristics International Conference

Kyoto, Japan, August 25–28, 2003

Size Localizer++ Basic Adaptive (100%) Adaptive (94%)
20 x 20 313 3.4 0.2
30 x 30 1969 18 1.2
40 x 40 8553 58 3.4
50 x 50 23158 203 5.6

100 x 100 131

5 Conclusion

We have presented the basic features of the Adaptive Search method, a new metaheuristics for
solving Constraint Satisfaction Problems (CSP). This method has now been fully re-implemented
as a C-based framework library available as freeware (both source code and several benchmark
examples) at the URL : http://contraintes.inria.fr/~diaz/adaptive/. Preliminary results are
encouraging and a recent extension consists in considering controlled stochastic moves when a
plateau is reached around a local minima. On the Magic Square Problem, this mechanism gives a
ten time speedup factor.

We are currently investigating multi-point extensions (à la genetic algorithms) and more
flexibility and stochasticity in the choice of the variable to modify.

6 References

[1] P. Codognet and D. Diaz. Yet Another Local Search Method for Constraint Solving. In :
Proceedings of SAGA01, 1st International Symposim on Stochastic Algorithms : Foundations and
Applications, LNCS 2246, Springer Verlag 2001.

[2] L. Michel and P. Van Hentenryck. Localizer++ : an open library for local search. Research
Report, Brown University 2001.

[3] V. Saraswat, P. Van Hentenryck et al. Constraint Programming, ACM Computing Surveys, vol.
28 no. 4, December 1996.

http://contraintes.inria.fr/~diaz/adaptive/

