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1 Introduction  
 
In the last years, the application of local search techniques for constraint solving started to raise 
some interest in the Constraint Programming community, We proposed some years ago a 
domain-independent local search method called Adaptive Search for solving Constraint 
Satisfaction Problems  (CSP) [1]. This method has now  been fully re-implemented as a C-based 
framework library available as freeware (both source code and several benchmark examples) at 
the URL : http://contraintes.inria.fr/~diaz/adaptive/. This new implementation is more generic 
and efficient than the previous version used in [1], but is dedicated to permutation problems, that 
is : all variables have a same initial domain and are subject to an implicit all-different constraint. 
Many classical problems fall into this category. 
 
We have designed a new meta-heuristics that takes advantage  of the structure of the problem in 
terms of constraints and  variables and  can guide the search more precisely   than a global cost 
function to optimize (such as for instance the number of violated constraints). We also use an  
adaptive memory in  the spirit of  Tabu Search  in order to prevent stagnation  in local minima  and 
loops. This method  is generic, can apply to a large class of constraints (e.g. linear and non-linear 
arithmetic constraints,   symbolic   constraints,  etc)   and   naturally  copes   with over-constrained  
problems.  Preliminary   results  on  some  classical  CSP problems (Nqueens, magic squares, 
all-interval series, number partitioning, etc) show very encouraging performances. The input of 
the method is a problem in CSP format, that is, a set of variables with their (finite) domains of 
possible values and a set of constraints over these variables. We also need, for each constraint, an 
error function that will give an indication on how much the constraint is violated.  This is very 
similar to the notion of “penalty functions” used in (continuous) global optimization. For instance 
the error function associated to an arithmetic constraint X - Y ≤ C will be max(0, |X-Y|-C). 
Adaptive search relies on iterative repair, based on variables and constraint errors information, 
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seeking to reduce the error on the worse variable so far. The basic idea is to compute the error 
function of each constraint, then combine for each variable the errors of all constraints in which it 
appears, therefore projecting constraint errors on involved variables. Finally, the variable with the 
maximal error will be chosen as a "culprit" and thus its value will be modified.  In this second step 
we use the well-known min-conflict heuristics and select the value in the variable domain that has 
the best temptative value, that is, the value for which the total error in the next configuration is 
minimal. In order to prevent being trapped in local minima, the Adaptive Search method also 
includes an adaptive memory à la Tabu Search (variables can be marked Tabu and “frozen” for a 
few iterations), but also integrates possible restart-based transitions to escape stagnation around 
local minima. Restarts are partial and are guided by the number of variables being marked Tabu.  
 
In our new implementation stochastic moves can also occur to escape from plateaux1, with a 
given probability. This last action has proved to be very effective on performances for 
benchmarks where many local minima with large plateaux occur, such as the magic square 
problem presented in section 5, for which a ten time speedup factor can be achieved with an 
adequate tuning (6%) of unconditional escape when a plateau is encountered. 
 
 

2 The Adaptive Search Algorithm 
 
The input of the method is a problem in CSP format, that is, a set of variables with their (finite) 
domains of possible values and a set of constraints over these variables; Constraint Solving and 
Programming has proved to be very successful for Problem Solving and Combinatorial 
Optimization applications, by combining the declarativity of a high-level language with the 
efficiency of specialized algorithms for constraint solving, borrowing sometimes techniques from 
Operations Research and Numerical Analysis [2]. 
 
Consider a n-ary constraint c(X1, ... , Xn) and domains D1, ... , Dn for variables {X1, ... , Xn}. An 
error function fC  associated to the constraint c is simply a real-valued function from D1 × ... × Dn 
such that fC (X1, ... , Xn) has value zero if c(X1, ... , Xn)  is satisfied. The error function will in fact 
be used as a heuristic value to represent the degree of satisfaction of a constraint and will thus give 
an indication on how much the constraint is violated.  This is very similar to the notion of “penalty 
functions” used in (continuous) global optimization. That is, this error function will be an 
(approximation of) the distance of the current configuration to the closest satisfiable region of the 
constraint.  For instance the (exact) error function associated to an arithmetic constraint X - Y ≤ C 
will be max(0, |X-Y|-C). Observe that, as the error is only used to heuristically guide the search, 
we can use any approximation when the exact distance is difficult (or even impossible) to 

                                                      
1 We will used the french spelling for the plural (“plateaux”) instead of the english plural of the 
french word (“plateaus”)  … 
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compute, such as approximating a (set of) region(s) by a convex hull. 
 
Adaptive search relies on iterative repair, based on variables and constraint errors information, 
seeking to reduce the error on the worse variable so far. The basic idea is to compute the error 
function of each constraint, then combine for each variable the errors of all constraints in which it 
appears (possibly normalized), therefore projecting constraint errors on involved variables. 
Finally, the variable with the maximal error will be chosen as a "culprit" and thus its value will be 
modified. The neighborhood consists in all possible modifications of the value of this variable, 
that is, in permutation problems, in all possible swaps with other variable/value pairs. The best 
neighbor (smallest value for the overall cost function)  is then selected to compose the next 
configuration. 
In order to prevent being trapped in local minima, the adaptive search method also includes an 
adaptive memory as in Tabu Search : each variable leading to a local minimum is marked and 
cannot be chosen for the few next iterations. It is worth noticing that conversely to most 
Tabu-based methods we mark variables and not couples <variable,value>, and we do not 
systematically mark variables when chosen in the current iteration but only when they lead to a 
local minimum.  
 
Before detailing the basic iteration of the adaptive search algorithm, we need to add some extra 
control parameters to tune the search process, in particular to handle (partial) restarts. In order to 
avoid being trapped with a large number of Tabu variables and therefore no possible 
diversification, we decide to randomly reset a certain amount of variables when a given number of 
variables are Tabu at the same time. Thus the reset limit is the number of simultaneous Tabu 
variables to reach in order to perform a (partial restart). On restart, depending on the reset 
percentage, we randomly reset a certain ratio of variables to random values.  
 
Input : 
 
Problem given in CSP form :  
 

 a set of variables V={V1, V2,…, Vn} with associated domains of values 
 a set of constraints C={C1, C2,…, Ck} with associated error function 
 a combination function to project constraint errors on variables 
 a (positive) cost function to minimize  

 
Some tuning parameters : 
 

 T : Tabu tenure (number of iterations a variable will be frozen on local minima) 
 RL : reset limit 
 RP : reset percentage 
 Max_I : maximal number of iterations before total restart 
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 Max_R : maximal number of total restarts 
 
Output : 
 
a sequence of moves (modification of the value of one of the variables) that will lead to a solution 
of the CSP (configuration where all constraints are satisfied) if the CSP is satisfied or to a  
quasi-solution of minimal cost otherwise. 
 
Algorithm : 
 
Iteration  =  1  
Restart    =  1 
Tabu_Nb  =  0 
repeat  
Start from a random assignment A of variables in V  
Opt_Sol = A 
Opt_Cost = cost(A) 
          Repeat  

1. Compute errors of all constraints in C and combine errors on each variable  
(by considering for a given variable only the constraints on which it  appears) 
2. select the variable X (not marked Tabu) with highest error  
3. evaluate costs of possible moves from X 
4.  if  no improving move exists 

then  mark X as Tabu until iteration number : Iteration + T 
 Tabu_Nb = Tabu_Nb + 1 
 if  Tabu_Nb ≥ RL 
 then randomly reset RP variables in V (and unmark those Tabu) 
else  select the best move and change the value of X accordingly  

to produce next configuration A’ 
 if  cost(A’)  ≤  Opt_Cost 
 then  Opt_Sol    =  A’ 
          Opt_Cost   =  cost(A’) 

          until a solution is found or Iteration  ≥  Max_I 
until a solution is found or Restart  ≥  Max_R 
output (Opt_Sol, Opt_Cost) 
 
 

3 Escaping Plateaux 
 
The above algorithm does not perform any special action to in case of plateaux, that is, when the 
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selected variable has no strictly improving moves in the neighborhood but has some neighbor(s) 
with equal cost value. In some of our benchmark, we have found experimentally that the number 
of neighbors with cost values equal to that of the selected variable is around N, for a problem with 
N variables and thus neighborhoods of size N2. We have thus decided to add a stochastic 
component that will perform as follows when a plateau is encountered : 

 with probability 1-p : escape from plateau (mark current variable as Tabu and randomly 
choose another variable, then change its value) 

 with probability p : choose a neighbor on the plateau 
 
We have experimentaly found that the best results are achieved witha value of  p around 95%. 
 

4 A Sample Benchmark : Magic Squares 
 
The magic square puzzle consists in placing on a NxN square all the numbers in {1,2,..., N2} such 
as the sum of the numbers in all rows, columns and the two diagonal are the same. It can therefore 
be modeled in CSP by considering N2 variables with initial domains {1,2,..., N2} together with 
linear equation constraints and a global all_different constraint stating that all variables should 
have a different value. The constant value that should be the sum of all rows, columns and the two 
diagonals can be easily computed to be N(N2+1)/2. 
 
The instance of adaptive search for this problem is defined as follows. The error function of an 
equation X1 + X2 + ... + Xk = b is defined as the value of X1 + X2 + ... + Xk - b. The combination 
operation is the absolute value of the sum of errors (and not the sum of the absolute values, which 
would be less informative : errors with the same sign should add up as they lead to compatible 
modifications of the variable, but not errors of opposite signs). The overall cost function is the 
addition of absolute values of the errors of all constraints The method will start by a random 
assignment of all N2 numbers in {1,2,..., N2} on the cells of the NxN square and consider as 
possible moves all swaps between two values. We thus have at each iteration a dynamic 
neighborhood consisting of N2 configurations. 
 
We report in the following the performances results on several NxN instances (remark that a NxN 
instance means N2 variables with domains of size N2) for : 
 
 the Localizer++ C-based local search library [2],  
 the basic adaptive search algorithm (with no stochastic escape on plateaux) 
 the improved adaptive algorithm with 0.94 probability of staying on the plateau (if any) 

 
Results are given in seconds, for a PC with pentium-III 800 Mhz processor. 
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Size Localizer++ Basic Adaptive (100%) Adaptive (94%) 
20 x 20 313 3.4 0.2
30 x 30 1969 18 1.2
40 x 40 8553 58 3.4
50 x 50 23158 203 5.6

100 x 100 131
 

 

5 Conclusion 
 
We have presented the basic features of the Adaptive Search method, a new metaheuristics for 
solving Constraint Satisfaction Problems (CSP). This method has now  been fully re-implemented 
as a C-based framework library available as freeware (both source code and several benchmark 
examples) at the URL : http://contraintes.inria.fr/~diaz/adaptive/. Preliminary results are 
encouraging and a recent extension consists in considering controlled stochastic moves when a 
plateau is reached around a local minima. On the Magic Square Problem, this mechanism gives a 
ten time speedup factor. 
 
We are currently investigating multi-point extensions (à la genetic algorithms) and more 
flexibility and stochasticity in the choice of the variable to modify. 
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