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Abstract Local search metaheuristics are a recognized means of solving hard com-
binatorial problems. Over the last couple of decades, significant advances have been
made in terms of the formalization, applicability and performance of these methods.
Key to the performance aspect is the increased availability of parallel hardware,
which turns out to be largely exploitable by this class of procedures. As real-life
cases of combinatorial optimization easily degrade into intractable territory for exact
or approximation algorithms, local search metaheuristics hold undeniable interest.
This situation is further compounded by the good adequacy exhibited by this class
of search procedures for large-scale parallel operation. In this chapter we explore
and discuss ways which lead to parallelization in local search.

1 Introduction

Stemming from the pioneering work on the Traveling Salesman Problem (TSP) by
Flood [44] and Croes [36] in the 1950s and then Lin [72] in the 1960s, the interest
in Local Search for solving large combinatorial problems has been growing since
the last decade of the twentieth century and has attracted much attention from both
the Operations Research and the Artificial Intelligence communities. Local search
is used for finding optimal or near-optimal solutions to real-life problems when the
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search space is too large to be explored by complete search algorithms, such as
Mixed Integer Programming or Constraint Solving [1, 65, 56]. Efficient general-
purpose systems for local search now exist, for instance the Comet [115], which has
been parallelized for small clusters of PCs, [83, 84], or the Localsolver system [49].

Local search algorithms start from a random configuration and try to improve this
configuration, little by little, by small changes in the values of the problem variables.
Hence the term “local search” as, at each time step, only new configurations that are
“neighbors” of the current configuration are explored. The definition of what consti-
tutes a neighborhood will of course be problem-dependent, but basically it consists
in changing the value of a few variables only (usually one or two). The advantage of
local search methods is that they will usually quickly converge towards a solution
(if the optimality criterion and the notion of neighborhood are defined correctly)
and not exhaustively explore the entire search space. These methods naturally lead
to concurrent execution, by considering the development of several configurations
at the same time. This can be done sequentially by maintaining a pool of candidate
configurations or in parallel if adequate hardware is available. Due to their simple
algorithmic structure, local search methods therefore naturally exhibit various forms
of parallelism, either with or without communication, and can be implemented on
various types of parallel architectures such as multicore machines, grids or clus-
ters, GPUs, or massively parallel machines. Indeed parallel implementation of lo-
cal search methods has been studied since the early 1990s, when parallel machines
started to become widely available; see [117, 116] for a general survey and concepts,
or [97] for basic parallel versions of tabu search, simulated annealing, GRASP and
genetic algorithms. With the increasing availability of PC clusters in the early 2000s
this domain became active again [6, 35], and can further take advantage of the ma-
jor advances in hardware in the last decade such as GPUs and massively parallel
machines with thousands or tens of thousands of cores. However, although many
methods have been developed and implemented in the last two decades, most of
these experiments have been done for small-scale multiprocessors, thus giving per-
formance evaluation for a few tens of cores at best. Only very few implementations
of efficient local search solvers on larger machines have ever been reported, leaving
open the question of the scalability of parallel local search in the age of exascale
machines [99].

In the rest of this chapter we will present a general panorama of parallel lo-
cal search methods. After a presentation of the basic mechanisms of local search
methods in Section 2 and their sources of parallelism in Section 3, we will detail
Single-walk approaches in Section 4, then Independent multi-walk methods in Sec-
tion 5 and finally Cooperative multi-walk approaches in Section 6. Section 7 shows
the effectiveness of parallel local search on two hard problems: the Stable Match-
ing Problem and the Quadratic Assignment Problem. A short conclusion and future
work end the chapter.
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2 Local Search Metaheuristics

Metaheuristic methods aim at finding the optimal solutions (among all possible so-
lutions) of a Combinatorial Optimization Problem. They have been proven to be
very efficient on a wide variety of these problems. A metaheuristic is defined as
a set of strategies for exploring the search space of a problem by using different
methods [19]. Metaheuristics are high-level procedures using choices (i.e., heuris-
tics) to limit the part of the search space that actually gets visited, in order to make
problems tractable.

Metaheuristics generally implement two main search strategies: intensification
and diversification, also called exploitation and exploration [19]. Intensification
guides the solver to deeply explore a promising part of the search space. In con-
trast, diversification aims at extending the search into different parts of the search
space [63]. In order to obtain the best performance, a metaheuristic should provide
a useful balance between intensification and diversification. However, by design,
some heuristics are better at intensifying the search while others are better at diver-
sifying it. More generally, each metaheuristic has it own strengths and weaknesses.
The current trend is therefore to design hybrid metaheuristics, by combining differ-
ent metaheuristics in order to benefit from the individual advantages of each method.

In this chapter we are especially interested in local search metaheuristics; the
interested reader can consult several surveys on metaheuristics [109, 98, 19, 24,
105, 106].

Local search methods (also known as trajectory methods) explore the search
space by iteratively making small changes to a single solution (the current solu-
tion). These methods generally start from a randomly generated solution candidate
but other strategies exist to start from a more promising initial solution constructed
heuristically. At each iteration a local search method performs a single move (i.e.,
a small change to the current solution). The set of all possible moves is called the
neighborhood (see Figure 1).

Fig. 1 Local search
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At each iteration, a solution from the neighborhood of the current solution is
selected to become the new current solution. Different strategies may be used to
select the next move, for instance selecting the best move from the neighborhood
(hill climbing), or the first move that improves the current solution (which is thus
dependent on the order in which the moves are considered), or selecting a random
improving solution.

When the neighborhood does not contain any improving solution, the meta-
heuristic has reached a local optimum1. Metaheuristics must provide strategies to
avoid becoming trapped in local optima. They detect this situation in order to move
to some other region of the search space. The simplest strategies to escape from
a local optimum are to restart the search from a new (usually random) point or
to perform a large perturbation of the current solution. These strategies are called
multi-start local search (MLS) or iterative local search (ILS) [73]. There are other
approaches and it is also possible to combine them.

By design, local search methods are very efficient at intensifying the search.
However, they generally include some (simple) strategies to diversify the search
(which are often executed when a local optimum is reached). Here we present the
most important local search methods.

Tabu search methods [54, 52, 53] use a memory structure to avoid getting trapped
in a local optimum. The main idea is to improve the basic hill-climbing algorithm
by maintaining a tabu list of recently visited solutions (in practice, some approxima-
tions are necessary to avoid memory explosion). These solutions become prohibited
(hence the term “tabu”) to discourage the search from returning to previously vis-
ited places. Generally, an aspiration criterion is used to authorize an otherwise tabu
move to be performed, in special circumstances (e.g., if it improves on the best solu-
tion found so far). The time an element remains tabu is called the tabu tenure. This
parameter has a great influence on the efficiency of tabu search procedures and must
be well tuned.

Simulated Annealing (SA) [70] is based on the annealing process of a crystalline
solid used in metallurgy to improve the quality of a solid. For this, the cycles of slow
cooling and heating (annealing) are alternated in order to reach a minimal energy
state, which corresponds to a stable structure of the metal. Starting from a high tem-
perature (at which the material is liquid), the cooling phase solidifies the material
by a gradual decrease of the temperature. The SA method is based on this process
to allow moves that result in solutions of worse quality than the current solution, in
order to escape from local optima. At each iteration, it randomly selects a neighbor
among its neighborhood. If it improves the current solution the move is adopted.
Otherwise (a local optimum is reached) the probability of making this move is con-
trolled by a parameter called the temperature. This temperature decreases during
the search process; thus at the beginning of the search the probability of accept-
ing worse moves is high but it gradually decreases, converging to a simple iterative
improvement algorithm. Usually a Boltzmann distribution is used to compute the

1 The term is opposed to global optimum which is the best possible solution to the optimiza-
tion problem. The reached local optimum may actually coincide with the global optimum, but the
method is generally unable to detect this occurrence.
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probability to accept a worse quality solution (taking into account both the current
temperature and how much the solution is degraded).

Variable neighborhood search (VNS) methods [86] escape from a local optimum
by changing the neighborhood structure using different move types. The basic idea
in VNS is that a local optimum relative to a given move type can be improved using
a different move type (since the optimum is w.r.t. the neighborhood of the current
solution). The search concludes when the current solution cannot be improved with
all possible move types. It is thus important to correctly define the number and types
of neighborhoods to be considered and the order in which they are tried. When these
parameters are well tuned the VNS metaheuristic provides high-quality solutions.

Adaptive Search (AS) [31] is a generic, domain-independent, constraint-based
local search method. AS takes advantage of the structure of the problem, in terms
of constraints and variables, in order to guide the search more precisely than a sin-
gle global cost function. Indeed, a cost is also associated with each constraint that
models the problem, measuring the degree of violation of the constraint in the cur-
rent solution candidate. This cost is then spread over all variables involved in the
constraint (e.g., using a weight linked to the coefficient of the variable in a linear
constraint). The worst variable is selected for update (i.e., to move), with the neigh-
borhood being the set of all possible values for this “culprit” variable. Finally, AS
maintains a tabu list of recently modified variables which led to local optima, but
also implements a reset mechanism as used in ILS methods.

Extremal Optimization (EO) [21, 22, 20] is a metaheuristic inspired by self-
organizing processes often found in nature. It is based on the concept of Self-
Organized Criticality (SOC) initially proposed by Bak [15, 13], and in particular on
the Bak-Sneppen model of SOC [14]. In this model of biological evolution, species
have a fitness ∈ [0,1] (0 representing the worst degree of adaptation). At each iter-
ation, the species with the worst fitness value is updated, i.e., its fitness is replaced
by a new random value. This change also affects all other species connected to this
“culprit” element and their fitness value also gets updated. This results in an ex-
tremal process that progressively eliminates the least fit species (or forces them to
mutate). Repeating this process eventually leads to a state where all species have a
good fitness value, i.e., a SOC. The EO metaheuristic follows this line: it inspects
the current solution, selects the worst variable (the one with the lowest fitness) and
replaces its value by a random value (this corresponds to a move). However, always
selecting the worst variable can lead to a deterministic behavior and the algorithm
may stay blocked in a local minimum. To avoid this, the authors propose an ex-
tended algorithm; which first ranks the variables in increasing order of fitness (the
worst variable has thus a rank k = 1) and then resorts to a probability function over
the ranks k in order to introduce uncertainty in the search process: P(τ;k) = k−τ .
This power-law probability distribution depends on a single parameter τ , which is
problem-dependent. Depending on the value of τ , EO provides a wide variety of
search strategies from pure random walk (τ = 0) to deterministic (greedy) search
(τ → ∞). With an adequate value of τ , EO cannot be trapped in local minima since
any variable is likely to mutate (even if the worst ones are privileged). This param-
eter can be tuned by the user.
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While simple, local search procedures have been successfully used to find high-
quality solutions for many Combinatorial Optimization Problems. They are also of-
ten a part of a hybrid metaheuristic to intensify the search around a promising solu-
tion found by another metaheuristic. However, there are some hard (real-life) prob-
lems for which the limit to consider the execution time as “reasonable” is rapidly
reached, even using metaheuristics. It is unquestionable that the more computational
resources are available, the more complex problems may be solved. It is therefore
natural to consider exploiting the various forms of augmented computational power
that are currently available, as conveniently as feasible.

3 Sources of Parallelism

Apart from domain-decomposition methods and population-based methods (such
as genetic algorithms), [117] distinguishes between single-walk and multiple-walk
methods for local search. Single-walk methods consist in using parallelism inside
a single search process, e.g., for parallelizing the exploration of the neighborhood
(see for instance [74] for such a method making use of GPUs for the parallel phase).
Multiple-walk methods (parallel execution of multi-start methods) consist in de-
veloping concurrent explorations of the search space, either independently or co-
operatively with some communication between concurrent processes. Sophisticated
cooperative strategies for multiple-walk methods can be devised by using solution
pools [34], but require shared memory or emulation of central memory in distributed
clusters, thus impacting on performance.

3.1 Single-Walk and Multiple-Walk Methods

Figures 2 and 3 below show in a graphical way the different parallel trajectories of
single-walk and multiple-walk methods.

Fig. 2 Single-walk parallelism
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Fig. 3 Multiple-walk parallelism

Single-walk parallelism is limited to the neighborhood of the current solution
and parallel processes need to be synchronized in order to choose the most promis-
ing neighbor and commit to the next solution. Multiple-walk parallelism explores
a wider portion of the search space, limited only by the number of available con-
current processes. A key point is that independent multiple-walk methods are the
easiest to implement on parallel computers, as they require no communication be-
tween processes; hence they are equivalent to parallel multi-start methods. On the
other hand, one has to take care to ensure a good diversification of the search pro-
cesses, which can only be achieved through communication between concurrent
processes. Therefore, communication of information between concurrent processes
could, if implemented without much overhead, improve the overall search. This type
of parallelism is called cooperative multiple-walk parallelism. We will detail in the
following sections the different methods that have been proposed in the literature
for the single-walk approach, the independent multiple-walk approach and the co-
operative multiple-walk approach.

3.2 Parallel Speedups and Runtime Distributions

Since [117, 116], it has been believed that combinatorial problems can enjoy a linear
speedup when implemented in parallel by independent multiple-walks if solutions
are uniformly distributed in the search space and if the method is able to diversify
correctly. Thus, in theory, if such a method is implemented on a machine with n pro-
cessors, the initial problem instance will be solved with a speedup factor of n. We
will see that this is in fact not so easy to achieve in practice, especially when con-
sidering implementation on massively parallel multiprocessors, e.g., with thousands
of processors. Moreover, when considering the latest cooperative methods and hy-
bridization between different types of solvers, better performance can be achieved
amounting to super-linear speedups.

But let us first see how to better analyze the execution times of local search algo-
rithms, both sequentially and in parallel, in order to better understand the behavior
and potential parallelization of such algorithms on different problem instances. In-
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deed the parallel speedup depends not only on the algorithm at work, but also on the
structure of the problem instance which it is attempting to solved. Most papers on
the performance of stochastic local search algorithms focus on the average execu-
tion time in order to measure the performance of the method, both for sequential and
parallel executions. However, a more detailed analysis could be done by looking at
the whole series of execution times. Indeed, because of the many stochastic choices
within any local search method, the runtime on the same problem instance might
vary significantly from one execution to another. Thus by considering the execution
time of a local search method on a given problem instance as a random variable and
by observing the execution time over many runs, the runtime behavior can be char-
acterized by its statistical distribution. This study of so-called runtime distributions
has been initially proposed in [62] for stochastic local search algorithms for the SAT
problem. In this context, the property of having a linear parallel speedup in solving
a given problem instance by a stochastic algorithm has been proven only under the
assumption that the probability of finding a solution in a given time t follows an ex-
ponential law, that is, if the runtime behavior follows a pure exponential distribution
(non-shifted). This behavior has been conjectured for local search solvers on the
SAT problem in [61, 62], and shown experimentally for the GRASP metaheuristics
on some combinatorial problems [4], but it is not always the case for other types of
problems. Although it is very difficult to formally prove that the execution of some
stochastic algorithm on a given problem instance follows an exponential distribu-
tion, it is easy to verify this experimentally. Indeed, as introduced in [5, 103], this
can be done by constructing so-called time-to-target plots, in which the probability
of having found a solution as a function of the elapsed time is measured.

However, when considering not only exponential distributions, one has to look
directly at the runtime distributions and analyze them with statistical tools. Such an
analysis of the scalability of independent multiple-walk local search methods has
been proposed in [114] and developed in [113], where a general framework is pre-
sented in order to estimate the parallel performance of any Las Vegas algorithm [12]
by analyzing the runtime behavior of the sequential version of the algorithm. Indeed,
by approximating the runtime distribution of the sequential process with statistical
methods, the runtime behavior of a multiple-walk parallel process can be predicted
by a model based on order statistics [38]. Experiments show that the estimation is
quite accurate and predicts performance close to the empirical data, with a deviation
limited to about 20%. It also shows that, depending on the problem, runtime distri-
butions can be approximated by two types of distributions, exponential (shifted and
non-shifted) and lognormal, being much more complex than a pure (non-shifted)
exponential distribution, which would give rise to a linear parallel speedup. In the
cases of a shifted exponential distribution (the most common one) or a lognormal
distribution, the speedup is no longer linear, but admits a finite limit when the num-
ber of processors goes toward infinity, and is thus bounded.
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4 Single-Walk Approaches

Single-walk methods use parallelism within a single search process, e.g., by par-
allelizing the most computationally expensive functions of the algorithm. Runtime
profiling of local search procedures reveals that one of the most resource-consuming
parts is the evaluation of the neighborhood. This situation makes this function an at-
tractive target to be parallelized with single-walk search procedures. The basic idea
is to divide the neighborhood into different parts, which are then independently
evaluated, in parallel. This strategy is called neighborhood decomposition.

In [107], Taillard presents one of the first implementations of the single-walk
strategy for local search methods. He proposes a neighborhood decomposition strat-
egy applied to the tabu search method for solving large instances of the Quadratic
Assignment Problem. The implemented prototype ran on a network of Transputers.

In 1994, Garcia et al. [47] presented a new parallel version of the tabu search
metaheuristic, applied to solving the vehicle-routing problem with time windows
constraints. They propose a master-slave architecture where the master creates a
partition of the neighborhood and assigns the portions to the available processors
(slaves). Each processor then explores its own neighborhood, identifies its best
move, and sends this move back to the master processor.

Note that parallel activities involved in the neighborhood decomposition task
need to be performed at each iteration of the algorithm. These activities have to be
spawned and joined several times during the main algorithm execution, thereby in-
ducing a significant overhead due to the management of fine-grained tasks. Dealing
with this overhead is considered a major challenge in single-walk parallelization.
For instance, in the aforementioned work by Taillard, the authors report a maximal
parallel efficiency2 of 85% using only 10 processors.

Recent years have seen a proliferation of GPUs; which, even though they are
designed to perform mostly intensive graphical operations, have significant gen-
eral compute ability and relatively low cost, so as to attract research on several dif-
ferent applications. Such is the case for single-walk parallelization in local search
methods, where GPUs have emerged as a suitable architecture to implement the
neighborhood decomposition. When the operations happen to be within their reach,
GPUs can effectively operate on data much faster than traditional CPU architec-
tures: doing neighborhood decomposition in parallel on GPUs has the potential to
noticeably reduce the overhead of single-walk approaches. Luong et al. in [74, 75]
present a parallel local search method that uses the neighborhood decomposition
strategy performed by a GPU unit. They propose guidelines to efficiently imple-
ment the parallel evaluation of the neighborhood considering the idiosyncrasies of
a GPU architecture (e.g., memory management and access, thread control, mapping
of neighborhood solutions to GPU threads, etc.). This approach proved to be effec-
tive in solving different optimization problems, as witness the authors’ report on
parallel speedups, which range from 50 when using an entry-level GPU, up to 240

2 Parallel efficiency: the division of the theoretical CPU time with an ideal speedup by the CPU
time effectively observed.
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with a higher-performance GPU board. This approach was tailored for embedding
within the ParadisEO framework, as reported in [82].

Arbelaez and Codognet [9] present a parallel version of the adaptive search (AS)
algorithm using both multiple-walk and single-walk parallelization. The solver takes
advantage of the GPU architecture by executing multiple instances of the AS solver,
but also and at the same time performing the evaluation of large neighborhoods in
parallel, as previously described. The authors report a maximum speedup of 17 in
solving two classical constraint satisfaction problems, and a speedup of 3 in solving
the Costas Array problem.

Single-walk parallelization in GPU architectures presents rather good perfor-
mance, however the implementation of local search methods on GPUs is far from
trivial and the scalability of these approaches is limited, if nothing else, by Amdahl’s
law [8]. Amdahl’s law states that the maximum speedup that may be expected from
the parallelization of an algorithm is 1/s where s is the fraction of non-parallelizable
parts of the algorithm. For instance, if a sequential algorithm is 90% parallelizable,
then the theoretical maximum speedup one can ever expect by parallelizing this
algorithm is 10, regardless of the number of processors in use.

5 Independent Multiple-Walk Approaches

Multiple-walk methods develop concurrent explorations of the search space, ei-
ther independently or cooperatively. The independent multiple-walk scheme derives
from the observation that local search processes, being mostly stochastic in nature,
will exhibit different behavior from one run to the next. This will directly impact on
the time it takes to complete an individual search, which will vary accordingly. The
base insight is thus to have several instances execute concurrently, so as to collect
the earliest or the best result.

Because they are concerned with processes whose execution is unrelated, inde-
pendent multiple-walk methods tend to be relatively straightforward to implement
on parallel computers and can lead – at least in theory – to linear speedups [117]. It
should be noted, however, that this holds under the assumption that the time it takes
to reach a solution obeys an exponential distribution. We will see that a more com-
plex model may be required in order to explain the performance actually observed
in larger-scale parallel executions.

5.1 Early Independent Multiple-Walk Methods

Early work, in 1996, by Rego and Roucairol [100] introduced a parallel variant
of the tabu search metaheuristic, which they apply to the Vehicle-Routing Prob-
lem. This system uses the PVM parallel platform to perform independent parallel
searches, starting from a common point but following different paths. Each search
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reports back to a central hub, which in turn collects solutions, looking for a local op-
timum, which, in turn, is used to relaunch a new batch of searches. This algorithm
mixes functional with data parallelism, and it uses slightly different instances of the
tabu search procedure, in the hopes that the ensuing diversity will promote better
collective performance. The authors report that the parallel system begets higher-
quality solutions, although at the expense of a sometimes significantly slower com-
putation. The reason for the performance impact is not very clear, but may be related
to the parallel library overheads.

In 1999, Eikelder et al. [43] proposed a Sequential and Parallel Local Search
Algorithm, applied to the Job Shop Scheduling problem. In this work, the authors
recognize the impact of non-determinism in performing multiple instances of a lo-
cal search procedure, and establish a process whereby the parallel speedup of a
simple independent multiple-walk local search algorithm may be modeled. The pro-
posed approach takes into account the success or failure of the search procedures,
as well as the quality of the solutions found, for the definition of parallel speedup.
The predicted times are a good match to the observed times in the authors’ experi-
ments, scaling to about 40 large-granularity processors. The predicted and observed
speedups both appear to have a largely linear section, up to about 10 processors. Be-
yond that, performance gains suffer a visible drop, yet there remains an undeniable
benefit from running independent multiple-walk searches in parallel.

A system by Mori and Ogita [87] was proposed in 2000, which also does tabu
search in parallel, applying it to the reconfiguration of power distribution systems
problem. One of the driving ideas is that carrying out multiple search processes in
parallel, each with just a distinct value for the tabu tenure parameter, will lead to a
faster convergence on an optimal solution, because of the subsequent diversity. The
authors combine this with a parallel decomposition of the neighborhood, i.e., a form
of functional parallelism. The results indicate that tabu search produces the best
quality solutions among several metaheuristics (which include genetic algorithms
and simulated annealing), in both the sequential and parallel versions. Likewise, the
parallel tabu search procedure exhibits the highest performance of the set, notably
so in the case where a moderate amount of parallelism is dedicated to the parallel
neighborhood decomposition (two to four sub-neighborhoods).

Finding different approaches to structure the neighborhood of a candidate solu-
tion was essential to the work of Garcia-Lopez et al. [48], published in 2002. The
authors propose a parallel method to do Variable Neighborhood Search, and apply
it to the p-Median problem, taking large instances from TSPLIB [101]. This pro-
posal follows three different takes on parallelism: either the local search, the vari-
able neighborhood search or both become subject to parallel execution. In all cases,
the parallel procedures execute independently, and the runtimes reflect a near-linear
speedup with up to eight processors. The prototype implementation runs on a mul-
ticore system, resorting to a shared-memory configuration using OpenMP [37], and
is therefore tied to that multiprocessor organization.

Another system was described in 2003, by Bortfeldt et al. [23], which carries
out multiple independent tabu search procedures, running on top of a distributed
system in the form of a network of workstations. The network of parallel processes
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keeps tabs on the solutions found by each worker, storing them in a storage object
for possible reuse by others. Even though the architecture is essentially that of in-
dependent multiple-walk parallelism, it may include various forms of information
exchange among workers, as a consequence of the solution storage access pattern,
by each participant. Solutions found by workers are made available to the entire
network or just part of it, e.g., workers may be arranged in a ring topology. Workers
may be selective as to which external solutions to look at and, should they perform
better, adopt. The authors apply their prototype implementation to the Container-
Loading Problem, with measurable solution quality improvements over competing
approaches, namely the sequential tabu search and genetic algorithms-based solvers.
Performance-wise, the parallel system actually requires more time to achieve its re-
sults and communication among workers only seems to yield minute improvements.

The 2010 work by Yazdani et al. [119] supplies another case of a parallel local
search procedure: in this instance, Variable Neighborhood Search benefits from the
diversification of neighborhood structures via the parallel independent exploration
thereof. The parallel architecture adopted is that of shared-memory multicore pro-
cessors. The authors apply their system to Flexible Job Shop Scheduling, a harder
variant of the base problem, and provide experimental validation in a parallel setup
with up to five processors. The results indicate that the Parallel Variable Neighbor-
hood Search procedure computes good-quality solutions, when compared to com-
peting approaches.

5.2 Recent Experiments and Performance Results

Work by Caniou et al. [28, 30, 29] presents a simple parallel scheme based on inde-
pendent multiple-walks with no communication between processes during search,
the sequential engine being based on the adaptive search metaheuristic. It was built
using the MPI [45] parallel programming interface and was tested on different hard-
ware platforms, of varying scale: up to a few hundred cores on the GRID’5000
platform in France and the Hitachi HA8000 and Fujitsu FX10 machines at the Uni-
versity of Tokyo and up to 8,000 cores on the JUGENE supercomputer at Jülich
Supercomputing Centre. Performance evaluation on large instances of some classi-
cal Constraint Satisfaction Problems from CSPLIB [51], such as the Magic Square,
Perfect Square and All-Interval problems, shows that speedups are very good for a
few tens of cores (e.g., speedup of a factor of 20-25 on 32 cores), and correct up to a
few hundreds of cores (e.g., speedup of a factor of 50-60 on 256 cores), but speedup
then degrades, showing that not much parallelism could be further extracted even
with a larger number of cores. Figure 4 shows the performance results of the paral-
lel adaptive search method on these problems in the form of runtime speedups for a
given number of cores.

However, another hard combinatorial benchmark, the Costas Arrays Problem
(CAP), was also tested with instances of CAP up to 23 (large instances) and the
experimental evaluation shows better parallel scalability. Indeed, parallel speedup
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scales very well (linearly) up to about 8,000 cores, on the JUGENE supercomputer.
Figure 5 shows the performance results of the parallel adaptive search method on
instances 21, 22 and 23 of CAP, in the form of runtime speedup for a given number
of cores.
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This can be explained by the fact that the runtime distribution of the adaptive
search metaheuristic on the CAP problem exhibits a nearly pure (non-shifted) ex-
ponential distribution; see [40] for details of experimental results. The authors also
experimented with a limited form of cooperation among search processes (exchang-
ing only solution costs between processes and performing restarts), but the results
were not markedly different from the independent multiple-walk strategy.

It turns out that most independent multiple-walk procedures start off with good
speedups attributable to parallel execution. However, this characteristic appears to
hit a problem-dependent hard limit, which may be attributed to the lack of en-
tropy (diversity) across the different runs which are being performed in parallel,
and thereby bounds the usefulness of such a strategy, at larger scale.

Although there are stand-out exceptions, this diminishing returns situation be-
comes especially obvious when attempting to scale beyond a few dozen cores. This
has prompted research into exploring more sophisticated parallel methods that can
compensate for this performance drop, namely those that rely on some form of co-
operation among worker threads, as discussed in section 6.

6 Cooperative Multiple-Walk Approaches

To overcome the limitations of the independent multiple-walk strategy, it is natu-
ral to consider a paradigm based on cooperation. This is the case of Cooperative
Multiple-walk methods, which add a communication mechanism to the independent
search strategy, in order to share or exchange information among solver instances
during the search process. However, designing an efficient cooperative method is
a very complex task, and many issues must be solved: What information is ex-
changed? Between which processes is it exchanged? When is the information ex-
changed? How is it exchanged? How is the imported data used? [112]. The work
presented in [76] studies these questions, and concludes that no one cooperative
configuration may efficiently tackle all problems. Indeed, most cooperative choices
are problem-dependent (and even instance-dependent).

According to the literature [117, 118, 19, 109], an efficient cooperative method
should consider four essential functionalities: flexibility, adaptability, performance
and scalability. Flexibility refers to the capability of a given method to tackle differ-
ent problems, using different methods and providing hybrid behavior. Adaptability
is related to the ability of a given method to adjust its cooperative behavior. In ad-
dition, a method has a good performance if it can obtain a high-quality solution in
a short execution time. Finally, scalability refers to the ability of a given method to
efficiently use a significant number of processing units (cores).

In this chapter, we analyze several approaches using the cooperative multiple-
walk strategy. We identify three different kinds of algorithms: metaheuristic paral-
lelization, agents-based and general frameworks.
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6.1 Metaheuristic Parallelization Approaches

We first analyze cooperative methods based on metaheuristic parallelization. One of
the oldest cooperative approaches was proposed in 1993 by Hogg and Williams [60].
The basic idea is to create multiple solver entities (metaheuristics) that share partial
configurations (hints) through a centralized memory (blackboard). Each entity re-
ports to the blackboard a hint at each step (based on its current state) with a given
probability p. When the entity is at an appropriate decision point, it reads a hint
from the blackboard with probability p. If p is set to zero, the algorithm behaves
like independent search. The implementation of the method is dedicated to solving
the graph coloring problem using two different heuristics: the Berlaz algorithm and
heuristic repair. The experimental evaluation is performed using 10 agents, solving
graphs with 100 nodes and comparing the performance of the independent and the
cooperative approaches. The cooperative version presents better performance than
the independent version in terms of the execution time, however the parallel scala-
bility is not evaluated in this work.

In 1998, Aiex et al. proposed a cooperative parallel tabu search for solving the cir-
cuit partitioning problem [3]. This method implements a master-slave model com-
posed of search processes (slaves) which implement different combinations of the
initial solution algorithm and move attribute for a specialized tabu search meta-
heuristic. Periodically, the search processes exchange information (elite solutions)
with the master node, which maintains a centralized shared memory for elite con-
figurations. The parallel procedure is implemented using two different parallel pro-
gramming languages, PVM (based on message passing) and Linda (based on the
shared-memory model). The authors test both implementations on a set of problem
instances from the ISCAS benchmark on an IBM SP-2 machine with 16 proces-
sors. Only 10 processors are used in the experimental evaluation, using one master
and nine search processes. The implementation improves the solution quality for
all problem instances with respect to the sequential version of the algorithm, the
PVM version being 20% faster than the Linda implementation. This work does not
present any evaluation of the performance in terms of the execution time and the
parallel scalability.

Gendreau et al. [50], in 1999, proposed another master-slave scheme to paral-
lelize the tabu search algorithm for solving the dynamic vehicle-routing and dis-
patching problem. The master entity manages an adaptive memory which is fed by
a set of tabu search instances (slaves). The adaptive memory is used to create new
initial solutions for slave processes. The authors present a prototype implementa-
tion, which runs on a network of 17 SUN UltraSparc workstations. The proposed
method is compared with other heuristic approaches and obtains a better solution
quality than its competitors. An evaluation of the parallel scalability is performed
using up to 16 processors, showing that the solution quality is improved by increas-
ing the number of processors involved.

Two similar methods are proposed to implement cooperation on the GRASP
(Greedy Randomized Adaptive Search Procedure) and the Path Relinking meta-
heuristic [2, 102]. A distributed cooperation mechanism was proposed by Aiex et
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al. in 2003 [2], which creates several search processes. Each process sends the best
overall configuration to the other processes when the cost is improved. Each pro-
cess maintains a local elite pool which possibly contains configurations from all
processes. This pool is used as input for the Path Relinking phase. An experimental
evaluation is carried out solving standard job shop scheduling test problems from
Beasley’s OR-Library. The experiments are done on an SGI Challenge computer
composed of 28 R10000 MIPS processors, using 1, 2, 4, 8 and 16 processors. The
prototype is coded in Fortran using the MPI library. The cooperative strategy obtains
almost linear speedups, improving on the independent strategy; which, as expected,
shows only a sub-linear speedup.

Ribeiro and Rosseti, in 2007, proposed another parallel cooperative approach
also using GRASP and Path Relinking [102]. This method takes advantage of the
multi-start behavior of the GRASP metaheuristic to implement a multiple-walks
parallelization. In addition, a master-slave cooperative strategy is implemented.
Slave processes send the best configurations to a master process, which maintains
a centralized pool of elite solutions. Then the master can send back a new config-
uration to slave nodes upon request. A prototype implementation of this approach
is developed using C and the MPI specification. The experiments are carried out
on a cluster of 32 Pentium II 400MHz processors solving the randomly generated
instances of the 2-path network design problem. The cooperative strategy presents
smaller execution times and scales better than the independent implementation, ob-
taining almost linear speedups and reporting a maximum speedup of 17.6 using 32
cores. Although the two previous methods present fair parallel performances, the
functionality is attached to GRASP behavior and to the problem nature, thus limit-
ing its flexibility.

A cooperative parallel approach that uses the rollout algorithm for solving the
Sequential Ordering Problem was proposed in 2003 by Guerriero and Mancini [57].
This approach presents a master-slave topology in which slaves are executed in par-
allel, running an instance of the rollout algorithm. Slave processes periodically send
the best configurations found to the master, which maintains a centralized pool of
configurations. The master restarts slaves with adjusted parameters using a new
initial point from the pool. The cooperative mechanism can adapt its behavior by
selecting the best parameters for the base algorithm. However, this cooperative ap-
proach is strongly linked to the rollout algorithm, limiting the possibility to use this
technique with other metaheuristics. The parallel version of the algorithm was im-
plemented in C++ using the MPI library. The experiments run on a cluster of nine
nodes with two Pentium 1 GHz processors, solving 14 instances of the Sequential
Ordering Problem (taken from the TSPLIB). The cooperative approach obtains a
good solution quality for the given set of problems. The scalability of the algorithm
is evaluated using 1, 2, 4 and 8 slaves (cores). The algorithm improves either the
solution quality or the execution time used to find the best solution when increas-
ing the number of slaves. However, the authors report that the rollout-like approach
obtains a higher computational time to find good solutions compared with other
state-of-the-art approaches.
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The 2004 work by Crainic et al. [34] presents a master-slave cooperative method
to solve the p-median problem based on the Variable Neighborhood Search (VNS)
metaheuristic. The master process implements a central memory to maintain the best
overall solution. The master also sends the initial configuration to slaves. The slave
processes (VNS processes) perform the search and notify the master when improv-
ing the overall solution. A slave process asks the master for a new search point if it
cannot improve its current configuration. An MPI implementation of this approach
run on a 64-processor SUN enterprise machine with 400 MHz clock. The experi-
ments use 1, 5, 10 and 15 processors, solving a set of problems from the TSPLIB
benchmark. This strategy obtains significant gains in terms of execution time, main-
taining a good solution quality. However the cooperation mechanism is strongly
linked to the behavior of the VNS metaheuristic and to the problem model. The
principles of this approach include avoiding using parameters, which is convenient
for the user but not for the adaptability of the system.

In 2012, Cordeau and Maischberger [33] proposed a parallel iterated tabu search
algorithm to solve vehicle-routing problems. The basic idea is to execute in parallel
several iterated tabu search solver instances using different sets of parameters. The
algorithm implements a communication mechanism to share the most promising
configurations found in the search process. Each process can apply a crossover op-
erator to the received configurations (with a given probability), in order to combine
information of two different received configurations. The algorithm is implemented
in C++ using the MPI libraries for the parallel version. The experiments run on a
cluster composed of 128 nodes, each with a 3 GHz dual Intel Xeon CPU E5472
(i.e., four cores per node). This strategy is tested solving different variants of the
vehicle-routing problem, using up to 80 cores, and obtaining good performances in
terms of the solution quality (allowing the identification of new best known solu-
tions for a large set of problems).

A cooperative approach based on the execution of multiple instances of the adap-
tive search solver was presented in 2013 by Machado et al. [77]. A single master
solver instance sends every k iterations its current configuration to the other solver
instances. Since this information is stored in a shared-memory structure, all the
solver instances (threads) running on the node benefit from this communication.
Each solver instance decides whether it adopts the received configuration or contin-
ues its current search process. This cooperative scheme was implemented using the
GPI (Global Address Space Programming Interface) API for parallel applications
running on clusters. The experiments are conducted on a cluster system with 155
nodes; each node includes a dual Intel Xeon 5148LV (i.e., four cores per node). This
strategy is evaluated solving two constraint satisfaction problems from the CSPLib:
all-interval and magic-square; and one hard real-life problem: the Costas Array
Problem (CAP). The cooperative strategy presents no gain compared to the inde-
pendent strategy, when solving the CAP. For the CSPLib problems the cooperative
approach presents a better speedup than the independent strategy. The parallel scal-
ability is evaluated using up to 512 cores; however the obtained speedups are sub-
linear for both cooperative and independent approaches. More recently, in 2015,
Caniou et al. presented a similar approach in [29], which uses the same base algo-
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rithm (adaptive search) and the same set of CSPLib problems. The authors propose
a new cooperative approach in which only single integer values are exchanged be-
tween entities (as opposed to complex data types such as vectors of variables, i.e.,
a configuration). The receiver entity uses this information to decide whether it is
convenient to develop a restart procedure. This strategy is evaluated on the Helios
cluster of the GRID’5000 platform, using up to 128 cores. The results of the exper-
imentation cannot show an improvement in the performance using this cooperative
approach.

6.2 Agent-Based Approaches

Agent-based modeling is a powerful strategy that facilitates the implementation of
cooperative approaches. In early work, in 1998, Talukdar et al. propose a multi-
agent-based cooperative methodology to combine solving strategies [111]. The A-
Team (asynchronous teams) framework allows agents to cooperate through a shared
memory containing a population of configurations. Agents can create, modify or
delete configurations from the shared memory. Furthermore, they can obtain elite
configurations from the shared memory, which have probably been created by an-
other agent, in order to cooperate and make the initial set of configurations evolve.
The A-Team framework provides a good level of flexibility, because agents can im-
plement different algorithms, and this method can be applied to different problems.
The referenced paper does not report any experimental evaluation, however this ap-
proach has been used as the basis for many agent-based cooperative solvers.

In 2004, Milano and Roli presented a multi-agent metaheuristic architecture
(called MAGMA) that can describe cooperative search or hybrid metaheuristics [85].
This architecture is based on a multi-level organization in which components
(agents) are classified according to their capabilities. Low-level agents describe the
basic functionality of metaheuristics. A top layer manages integration and coopera-
tion of different solvers. Agents in the top layer can store partial or complete con-
figurations and promote changes in lower layers in response to the gathered infor-
mation. This approach provides a theoretical description that can be easily adapted
to tackle different problems and to use different metaheuristics, thus providing fair
flexibility and adaptability. Similarly to the A-Team strategy, MAGMA is consid-
ered as a generic framework; the referenced paper only provides an experimental
evaluation in the appendix, where a guided-restart iterated local search algorithm is
conceived as a combination of existing components in the MAGMA framework.

A multi-agent architecture was proposed in 2006 by Bachelet and Talbi for solv-
ing large-scale instances of the Quadratic Assignment Problem [110]. This method,
called COSEARCH, is composed of a set of agents that perform specific tasks:
search agent, intensifying agent and diversifying agent. COSEARCH implements
as the main search agent a tabu search heuristic; for the diversifying agent, it uses
a genetic algorithm; and for the intensifying agent, a kick operator is used. These
agents share information through an adaptive memory that stores information about
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the already visited areas of the search space and about the intrinsic nature of the elite
solutions already found (initial and elite configurations). This strategy is evaluated
solving a set of problem instances from the QAPLib benchmark. The experiments
run on a heterogeneous parallel platform composed of around 150 workstations,
using a significant number of cores. The results show COSEARCH presents better
performance than a basic parallel multi-start strategy, in terms of execution time and
solution quality.

The 2007 work by Aydin [11] proposed a study of different cooperative topolo-
gies for agent-based metaheuristics. This work tested three different schemes: A-
Team, a multiple-island model and variable neighborhood search. The job shop
scheduling problem is used to develop the experimental evaluation, which only
considers the solution quality. All the schemes are developed using DREAM soft-
ware [10] which is a Java-based framework that implements the distributed sub-
population model for evolutionary algorithms by using multi-agent technology. The
main objective in this experimentation is to reveal more details about each strategy.

In 2009, Cadenas et al. presented a cooperative parallel hybrid strategy that uses
machine learning techniques [26]. The system is composed of two different types of
agents: metaheuristic and coordinator. Multiple instances of different metaheuristics
are run in parallel by metaheuristic agents, which, simultaneously, share informa-
tion through a blackboard data structure. One coordinator agent is used to analyze
the information in the blackboard and to adapt the metaheuristic agents’ behavior.
The coordinator agent incorporates knowledge from an offline machine learning
process. This knowledge helps the coordinator to guide the search and to adapt the
behavior of the system to different situations. The authors also proposed a Java im-
plementation of this strategy using tabu search, simulated annealing and genetic
algorithms for the metaheuristic agent. This implementation is used to solve differ-
ent instances of the knapsack problem. The experiments run on an Intel core2 Quad
1.66 GHz. The parallel version of the algorithm, which consists in a parallel exe-
cution of each metaheuristic, presents better performance than the non-cooperative
approach. However, no comparison with state-of-the-art methods was carried out,
and the evaluation does not include a parallel scalability analysis.

A Coalition-Based Metaheuristic (CBM) was presented in 2010 by Meignan et
al. [81]. This approach is based on the agent metaheuristic framework and the hyper-
heuristic approach. The system architecture is composed of agents that implement
a complete set of capabilities that make them suitable to perform different roles
during the execution (strategist, guide, intensifier and diversifier). Agents exchange
information in a decentralized and asynchronous manner. Agents use reinforcement
learning and mimetism to adjust their behaviors. The authors present an implemen-
tation of the CBM in Java, running on a 3 GHz Pentium 4 processor. This imple-
mentation is tested solving the capacitated vehicle-routing problem and it shows
competitive results in terms of both solution quality and execution time, using up to
20 parallel agents.

More recently, in 2014, Barbucha proposed another agent-based cooperative ap-
proach for population learning algorithms (called CPLA) [16]. This approach is
based on the A-Team framework and on the population learning algorithm. The
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basic idea is to make a population of individuals (configurations) evolve using a
process that is divided into stages. At each stage, the population is improved using
dedicated algorithms and different topologies. After each stage some elite individ-
uals are promoted to the next stage. Agents have communication capabilities and,
according to the stage, can share information with other agents (through a shared
elite pool). Furthermore, multiple A-Teams can be run in parallel and exchange
information through a migration manager agent. An implementation of the CPLA
was developed using JADE (Java Agent Development Framework) [17]. The exper-
iments run on the HOLK cluster built of 256 Intel Itanium 2 Dual Core processors
solving the vehicle-routing problem with time windows. The results show CPLA has
good performance in terms of solution quality and execution time, being competitive
with state-of-the-art methods. No parallel scalability is analyzed in the referenced
paper.

In 2016, Martin et al. proposed another agent-based cooperative approach [79].
In this method agents implement different metaheuristics to perform the search pro-
cess. Agents asynchronously exchange partial configurations; which are analyzed
by machine learning techniques in order to identify patterns and to adapt the agent
behavior. The experimental evaluation runs on a Linux cluster composed of eight
nodes, solving three different combinatorial optimization problems: the permuta-
tion flow-shop scheduling, the capacitated vehicle-routing and the nurse-rostering
problems. The results show good performance in terms of solution quality, using
up to 16 cores. The referenced paper does not present information about execution
times or parallel scalability.

6.3 Framework Approaches

In this last group we analyze cooperative methods that propose a general frame-
work. These methods generally offer high flexibility because they can tackle differ-
ent problems using different metaheuristic solvers.

Cahon, Melab and Talbi in 2004 proposed an open-source framework for paral-
lel and distributed design of hybrid metaheuristics, ParadisEO [27]. This frame-
work provides different hybridization mechanisms for metaheuristics including
population-based and single-solution methods. ParadisEO separates the modeling
of the metaheuristic formulation from the problem to be solved, using a modular
architecture that allows code and design reuse. For instance, ParadisEO-MO [64] is
the module dedicated to the design, analysis and implementation of local search al-
gorithms and the ParadisEO-PEO module provides a set of classes to design and im-
plement parallel and distributed metaheuristics. ParadisEO-PEO supports different
levels of parallel metaheuristics, from neighborhood decomposition (single-walk)
to independent and cooperative multiple-walk. Cooperation is implemented follow-
ing the island model (from population-based methods), in which the solver instances
can share information based on a migration model. ParadisEO has been successfully
experimented with in a wide range of problems; for instance in [108], the ParadisEO
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framework is used to solve the multi-objective constrained combinatorial optimiza-
tion model for a problem in radio network design.

A cooperative parallel hyper-heuristic framework was proposed in 2010 by Ouel-
hadj and Petrovic [94]. This framework is composed of multiple heuristic agents and
one cooperative hyper-heuristic agent. Heuristic agents implement low-level heuris-
tics performing a local search procedure. The best configuration found by the heuris-
tic agents is sent to the cooperative hyper-heuristic agent which maintains a pool
of elite configurations. This pool also stores information about low-level heuris-
tics and the objective function. Additionally, the cooperative hyper-heuristic agent
decides which low-level heuristic the heuristic agents will run and also provides
them with elite configurations from the pool to diversify the search. This method
clearly provides high flexibility, because it can be adapted to different problems or
metaheuristics. Additionally some parameters were defined to adapt the cooperative
mechanism. A prototype implementation to solve the flow shop scheduling problem
is presented using C# and multi-thread libraries. The experiments run on an Intel
Pentium M 1500 MHz processor obtaining good performance in terms of solution
quality, however this cooperative approach does not outperform the state-of-the-art
methods for the flow shop scheduling problem.

In 2014, Munera et al. [91] presented a Cooperative Parallel Local Search Frame-
work (CPLS). This framework is both problem- and metaheuristic-independent and
allows the programmer to tune the search process through an extensive set of param-
eters. The basic component of CPLS is an explorer, which executes an LS solver in-
stance and runs on a physical core (see Figure 6). Several explorers are grouped into
teams. Inside a team the explorers intensify the search, sharing the most promising
solutions via an elite pool. The teams also communicate with one another to pro-
mote search diversification; for this a measure of the distance between teams is used
to detect when two teams are exploring the same region (in which case a correc-
tive action is taken to force one team to explore another region). Thus intra-team
communication is used for intensification while inter-team communication ensures
diversification.

The concepts and entities involved are all subject to parametric control (e.g., trade-
off between intensification and diversification, elite pool size, communication in-
terval, distance, corrective action, etc.). An implementation of CPLS (available as
an open source library) in the X10 parallel programming language [104] has been
used to solve different hard Combinatorial Optimization Problems [93], providing
(super-)linear speedups up to 128 cores.

7 Parallelism at Work

In this section we discuss the efficacy of parallel local search methods on two hard
problems, both of which have several real-world application instances: the Stable
Matching (SM) and Quadratic Assignment (QAP) Problems.
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Fig. 6 CPLS framework

7.1 Stable Matching Problem

The Stable Matching problem was introduced by Gale and Shapley in their seminal
1962 paper [46]. The SM problem can be stated as follows: given a set of n men and
a set of n women, each of whom have ranked all members of the other set in a strict
order of preference, find a matching (a one-to-one correspondence between the men
and the women) such that there is no man-woman pair where both prefer each other
than their assigned partner. This criterion is called stability and is a desirable prop-
erty since it ensures, according to stated preferences, that there is no man-woman
pair for which both have incentive to elope – such a pair is called a blocking pair.
Gale and Shapley proved that such a stable matching always exists and proposed an
O(n2) algorithm (called GS in what follows) to find one.

However, requiring each member to rank all members of the opposite sex in
a strict order is unfeasible for many real-life, large-scale applications. A natural
variant of SM is the Stable Matching with Ties and Incomplete Lists (SMTI) prob-
lem [67, 78]. In SMTI, the preference lists may include ties (to express indifference
among several partners) and may be incomplete (to express that some partners are
unacceptable). A stable matching always exists for SMTI and can be easily obtained
by arbitrarily breaking the ties and applying the GS algorithm. However, with the
introduction of ties and incompleteness in the preference lists, the stable match-
ing for an instance of SMTI may have different sizes. It is thus desirable to find
the stable matching of maximal size (that is, with the smallest number of singles).
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This optimization problem has been shown to be NP-hard, even for very restricted
cases [67, 78]. This problem has attracted a lot of research in recent years since it
is at the heart of a wide variety of important real-life applications. Indeed, matching
problems can be found in several settings, such as car sharing or bipartite market
sharing, job markets and social networks. Many of these applications involve very
large sets, thereby ruling out the use of complete methods. SMTI has been shown to
be an APX-hard problem [58] and most recent research focuses on designing effi-
cient approximation algorithms, i.e., algorithms running in polynomial time yet able
to guarantee solutions within a constant factor of the optimum [66, 68]. SMTI cannot
be approximated within a factor of 21/19 and probably not within a factor of 4/3 ei-
ther [59]. Currently, the best known algorithms are 3/2-approximations [80, 69, 96]
or heuristic-based specific solutions. These algorithms produce a single solution for
a given problem instance, even though it is often useful to provide multiple optimal
or quasi-optimal solutions.

In [93], the authors proposed AS-SMTI, a local search procedure for SMTI based
on adaptive search in the CPLS framework briefly described in Section 6.3. The se-
quential version displays significant improvement in performance or solution quality
w.r.t. the state-of-the-art exact and approximate sequential algorithms, and the inde-
pendent multi-walk parallel version exhibits a significant speedup with an increasing
number of cores. Moreover, the cooperative parallel version achieves super-linear
speedup on average, consistently behaving very well on hard instances.

The parallel experiments were carried out on a cluster of 16 machines, each with
four 16-core AMD Opteron 6376 CPUs running at 2.3 GHz and 128 GB of RAM.
The nodes are interconnected with InfiniBand FDR 4× (i.e., 56 Gbps) and the ex-
periment involved up to 128 cores (four nodes and 32 cores per node). Figure 7
presents log-log graphs of the speedup using independent walks (IW in red) and co-
operative walks (CW in green) on 10 very hard and large instances (size n = 1 000).
The independent version reaches a quasi-linear speedup (91.5 for 128 cores) while
the cooperative version gets super-linear speedups (492 with 128 cores).

In [92] the same authors propose an extension of their algorithm to tackle one
important and hard variant of the Stable Matching problem: the Hospital/Resident
problem, which is NP-hard. This problem consists of a set of n1 residents who ap-
ply for k positions distributed among n2 hospitals. The preference list of a resident
consists of the ordered list of acceptable hospitals. The preference list of a hospi-
tal contains the ordered list of residents who apply to it. In the most general case,
preference lists are allowed to contain ties (to express indifference) and can be in-
complete (residents only apply to a subset of the hospitals and hospitals rank their
corresponding candidates). In addition, each hospital has a capacity, which indi-
cates the maximum number of positions it offers. The problem consists in finding a
(maximum size) stable matching between residents and hospitals (thus satisfying the
preference lists) that complies with the capacities (each resident being assigned to at
most one hospital and the number of residents assigned to any hospital not exceed-
ing its capacity). The HRT problem is important in the medical domain and there
are national programs in various countries, the best-known ones being the National
Resident Matching Program (NRMP) in the USA, the Canadian Resident Match-
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Fig. 7 Speedups obtained with AS-SMTI on hard instances of SMTI problems (size = 1 000)

ing Service (CARMS), the Scottish Foundation Allocation Scheme (SFAS) and the
Japan Residency Matching Program (JRMP). As might be expected, such programs
involve very large data sets. The HRT problem also has several other application
domains, e.g., assignment of applicants to positions in job markets.

The resulting cooperative parallel solver, while much simpler and more general,
displays performance which is comparable to the best known specific solvers for
HRT, including those which assume domain restrictions (e.g., having ties on one
side only).

7.2 The Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) was introduced in 1957 by Koopmans
and Beckmann [71] as a model for a facilities location problem. This problem con-
sists in assigning a set of n facilities to a set of n specific locations so as to mini-
mize the cost associated with the flows of items among facilities and the distance
between them. This combinatorial optimization problem has many other real-life
applications: scheduling, electronic chipset layout and wiring, process communi-
cations, turbine runner balancing and data center network topology, to cite but a
few [32, 18]. This problem is known to be NP-hard and finding effective algorithms
to solve it has attracted a lot of attention for many years.

Since the mid-1980s several metaheuristics have been successfully applied to
the QAP: tabu search, simulated annealing, genetic algorithms, GRASP and ant-
colonies [18]. For solving the hardest instances, the current trend is to resort to hy-
brid procedures, in order to benefit from the strengths of different classes of heuris-
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tics. Such is the case of hybrid genetic algorithms for the Quadratic Assignment
Problem (a.k.a memetic algorithms) [42]. The price to pay for this improvement is
a significant increase in the complexity of the resulting solver code.

An alternative approach for constructing hybrid search methods has been pre-
sented in [89, 88], based on cooperative parallelism. The authors show additional
benefits of the intra/inter-team cooperation mechanisms in order to provide hy-
bridization behaviors. To this end, CPLS was configured with explorers running
instances of different metaheuristics inside a team. Hybridization is obtained thanks
to the collaboration between explorers through the elite pool. It turns out that the
intra-team communication mechanism, implemented to intensify the search within
a team, now also becomes a mechanism to exchange information between explorers
running different metaheuristics. The whole system behaves like a hybrid solver,
benefiting from cross-fertilization, which stems from the inherent diversity of the
search strategies. The basic idea of running in parallel different metaheuristics that
exchange elite solutions has been mentioned [7, 111] but from a general and strictly
theoretical point of view. This technique may also be viewed as a portfolio ap-
proach [55] augmented with cooperation.

Following this line, the authors propose a parallel hybrid solver (called ParEOTS)
to tackle the Quadratic Assignment Problem (QAP), combining two different meta-
heuristics: Taillard’s Robust Tabu Search [107] and an original Extremal Optimiza-
tion method [90]. This parallel hybrid solver performs very well on QAPLIB, the
standard benchmark library used to assess QAP solvers [25]. For instance, linear
speedups up to 128 cores can be achieved, see Figure 8.
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Fig. 8 Speedups obtained with ParEOTS on two QAPLIB instances

ParEOTS has been tested on the 33 hardest problems of QAPLIB, using 128
cores. The solver was set to stop when reaching the Best Known Solutions (BKS,
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i.e., best known optimum) as recorded in the QAPLIB archive. A (comparatively
short) timeout of 5 minutes was used to limit the execution in case the BKS is not
reached. Each instance was solved 10 times (results are averaged). Table 1 shows
the performance of ParEOTS. For each problem, the table includes the current BKS
(which was sometimes the optimum), the number of times the BKS was reached by
the solver (#BKS), the Average Percentage Deviation (APD), which is the average
of the 10 relative deviation percentages computed as follows: 100× F(sol)−BKS

BKS , and
the average execution time (either shown as a decimal number representing seconds
or in a human-readable form as mm:ss). Even with a very short timeout, ParEOTS
provided solutions of high quality. It reached the best known solution (BKS) for all
but four QAPLIB instances. When the BKS was not reached, the obtained solution
was nevertheless very close (less than 0.22% off, on average).

BKS #BKS APD time

els19 17212548 10 0.000 0.0
kra30a 88900 10 0.000 0.0
sko56 34458 10 0.000 1.5
sko64 48498 10 0.000 1.7
sko72 66256 10 0.000 8.7
sko81 90998 10 0.000 0:24
sko90 115534 10 0.000 1:32
sko100a 152002 10 0.000 1:09
sko100b 153890 10 0.000 0:45
sko100c 147862 10 0.000 0:56
sko100d 149576 10 0.000 1:03
sko100e 149150 10 0.000 0:47
sko100f 149036 10 0.000 0:57
tai40a 3139370 10 0.000 1:26
tai50a 4938796 3 0.077 4:24
tai60a 7205962 3 0.146 4:15
tai80a 13499184 0 0.364 5:00
tai100a 21052466 0 0.298 5:00
tai20b 122455319 10 0.000 0.0
tai25b 344355646 10 0.000 0.0
tai30b 637117113 10 0.000 0.1
tai35b 283315445 10 0.000 0.3
tai40b 637250948 10 0.000 0.1
tai50b 458821517 10 0.000 2.6
tai60b 608215054 10 0.000 4.6
tai80b 818415043 10 0.000 0:53
tai100b 1185996137 10 0.000 1:11
tai150b 498896643 0 0.061 5:00
tai64c 1855928 10 0.000 0.0
tai256c 44759294 0 0.178 5:00
tho40 240516 10 0.000 0.5
tho150 8133398 1 0.007 4:51
wil100 273038 10 0.000 1:37

Table 1 ParEOTS on the hardest instances of QAPLIB (128 cores)
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This solver was also tested on even harder QAP instances from Palubeckis [95]
and Drezner [41], which were designed with a known optimum but were specifically
ill-conditioned in order to be difficult for many metaheuristic-based methods. Re-
cently Carvalho & Rahmann proposed new instances, with unknown optimum, that
turn out to be extremely difficult to solve [39]. For the former two classes of prob-
lems (called paluXX and dreXX) the solver was configured to reach the optimum
(within a timeout of 5 minutes). For the latter (called cr-blXX and cr-ciXX) it
was configured to stop as soon as the BKS was improved (with a timeout of 6 hours).
ParEOTS was able to improve the quality of several solutions. Table 2 summarizes
the new solutions discovered by ParEOTS for these hard problems, using 128 cores.

OPT previous ParEOTS

BKS #OPT new BKS time

palu30 271092 272080 10 271092 0.1
palu40 837900 840308 10 837900 4.0
palu50 1840356 1846876 10 1840356 0:17
palu60 2967464 2978216 10 2967464 1:07
palu70 5815290 5831954 10 5815290 2:07
palu80 6597966 6618290 10 6597966 1:56
palu100 15008994 15047406 1 15008994 5:00
palu150 58352664 58468204 0 58414888 5:00
palu200 75405684 75543960 0 75498892 5:00

dre90 1838 1959 9 1838 2:47
dre110 2264 2479 6 2264 3:43
dre132 2744 3023 1 2744 4:54

cr-bl81 - 7536 - 7532 48:41
cr-bl100 - 9272 - 9264 41:33
cr-bl121 - 11412 - 11400 1:05:10
cr-bl144 - 13472 - 13452 5:32:03
cr-ci144 - 795009899 - 794811636 2:29:27

Table 2 new solutions found by ParEOTS on other hard problems (128 cores)

It becomes clear from these examples that cooperative parallel hybridization
for different metaheuristics can attain very competitive results and, in some cases,
sometimes achieves a clear improvement.

8 Conclusion

In this chapter we have tried to present a survey of parallel local search methods over
the last 20 years. Although local search methods have been pioneered since the late
1950s, parallelism has only been investigated in the context of local search methods
since the 1990s, when multiprocessors started to become more widely available, and
this endeavor continued until the present with experiments on massively parallel
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supercomputers. Local search exhibits some natural opportunities for parallelism,
which may be easily derived from the basic features of the search methods such as
the selection of a new candidate solution within a neighborhood or the choice of an
initial (random) starting solution. This observation prompted the adoption of some
basic parallel schemes, such as single-walk and independent multi-walk methods,
which can be effective on small-scale multiprocessor machines (e.g., with a few
tens of cores). However, in order to achieve better performance on massively paral-
lel machines, more complex schemes have to be devised, for instance cooperative
multi-walks in which concurrent processes exchange information about their cur-
rent search and communicate so as to guide the search towards promising areas of
the search space. If information exchange and cooperation can be implemented effi-
ciently and become effective enough to actually lead processes to parts of the search
space where optimal or quasi-optimal solutions are, one may assert that cooperative
strategies are instrumental in tapping the performance potential held in massively
parallel computer architectures.

Encouraging results have already been achieved, e.g., super-linear speedups have
been demonstrated on a few hard optimization problems, but more work is needed to
develop general and efficient frameworks. Key issues to be investigated, especially
in the context of the massively parallel machines with tens or hundreds of thousands
of cores that are now available, are the flexibility and dynamicity of the system
architecture, the scale and frequency of the communication between processes, and
the nature of the information that should be exchanged.

Most, if not all, solvers that are mentioned in this text require non-trivial param-
eter tuning in order to attain their optimum performance. This task has been clearly
identified and is the object of a significant and continued research effort, often re-
sorting to different problem-solving techniques, such as machine learning.

Lastly, the hybrid nature of modern parallel multiprocessors poses several chal-
lenges concerning their effective use, as a significant portion of the available com-
pute power stems from nonstandard architectures, such as GPUs or other accelera-
tors. Making use of these multiple forms of parallelism is a high-stakes challenge,
but one for which local search techniques could be a very good fit.
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63. Holger Hoos and Thomas Stützle. Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann / Elsevier, 2004.

64. J. Humeau, A. Liefooghe, E. G. Talbi, and S. Verel. ParadisEO-MO: From Fitness Landscape
Analysis to Efficient Local Search Algorithms. Technical report, INRIA, 2013.

65. T. Ibaraki, K. Nonobe, and M. Yagiura, editors. Metaheuristics: Progress as Real Problem
Solvers. Springer Verlag, 2005.

66. Robert Irving and David Manlove. Approximation Algorithms for Hard Variants of the Sta-
ble Marriage and Hospitals/Residents Problems. Journal of Combinatorial Optimization,
16(3):279–292, 2008.

67. Kazuo Iwama, David Manlove, Shuichi Miyazaki, and Yasufumi Morita. Stable Marriage
with Incomplete Lists and Ties. In In Proceedings of ICALP ’99: the 26th International Col-
loquium on Automata, Languages and Programming, number ii, pages 443–452. Springer-
Verlag, 1999.
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75. Thé Van Luong, Nouredine Melab, and El-Ghazali Talbi. GPU Computing for Parallel Local
Search Metaheuristics. IEEE Transactions on Computers, 62(1):173–185, 2013.

76. Rui Machado, Salvador Abreu, and Daniel Diaz. Parallel Local Search: Experiments with a
PGAS-based programming model. In 12th International Colloquium on Implementation of
Constraint and Logic Programming Systems, pages 1–17, Budapest, Hungary, 2012.

77. Rui Machado, Salvador Abreu, and Daniel Diaz. Parallel Performance of Declarative Pro-
gramming Using a PGAS Model. In Kostis Sagonas and Gopal Gupta, editors, Practical As-
pects of Declarative Languages, PADL’2013, Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2013.

78. David Manlove, Robert Irving, Kazuo Iwama, Shuichi Miyazaki, and Yasufumi Morita. Hard
Variants of Stable Marriage. Theoretical Computer Science, 276(1-2):261–279, apr 2002.

79. Simon Martin, Djamila Ouelhadj, Patrick Beullens, Ender Ozcan, Angel A. Juan, and Ed-
mund K. Burke. A Multi-Agent Based Cooperative Approach to Scheduling and Routing.
European Journal of Operational Research, In press:1–26, mar 2016.

80. Eric McDermid. A 3/2-Approximation Algorithm for General Stable Marriage. In Inter-
national Colloquium on Automata, Languages and Programming, ICALP’2009, pages 689–
700, Rhodes, Greece, 2009.

81. David Meignan, Abderrafiaa Koukam, and Jean Charles Créput. Coalition-based metaheuris-
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