
Solving QAP with Auto-parameterization in
Parallel Hybrid Metaheuristics

Jonathan Duque1[0000−0002−3672−1630], Danny Múnera1[0000−0003−0762−0571],
Daniel Diaz2[0000−0002−2700−2271], and Salvador Abreu3[0000−0002−1613−4631]

1 Facultad de Ingenieŕıa, Universidad de Antioquia, Medelĺın Colombia
jonathan.duque@udea.edu.co danny.munera@udea.edu.co

2 CRI, Université Paris 1, Paris France
daniel.diaz@univ-paris1.fr

3 NOVA-LINCS, Universidade Évora, Évora Portugal
spa@uevora.pt

Abstract. The Quadratic Assignment Problem (QAP) is one of the
most challenging combinatorial optimization problems with many real-
life applications. Currently, the best solvers are based on hybrid and
parallel metaheuristics, which are actually highly complex and paramet-
ric methods. Finding the best set of tuning parameters for such methods
is a tedious and error-prone task. In this paper, we propose a strategy
for auto-parameterization of QAP solvers. We show evidence that auto-
parameterization can further improve the quality of computed solutions.
Our auto- parameterization scheme relieves the user from having to find
the right parameters while providing a high quality solution.

Keywords: QAP · Auto-parametrization · Heuristics · Parallelism

1 Introduction

The Quadratic Assignment Problem (QAP) is a hard combinatorial optimiza-
tion problem with many real-life applications such as scheduling, facility location,
electronic chipset layout, production, process communications, among many oth-
ers [1]. QAP has been shown to be NP-Hard and finding effective algorithms to
solve it is an active research topic in recent years.

Medium size problems can be solved using exact methods (e.g., size ≤ 30),
which can find an optimal solution or prove that a problem has no solution [2].
Exact methods consider the entire search space: either explicitly by exhaustive
search or implicitly, by pruning some portions of the search space that have been
detected as irrelevant for the search.

To tackle harder problems, one must resort to incomplete methods which pro-
vide good, albeit potentially sub-optimal solutions in a reasonable time. Such is
the case for metaheuristics, which are high-level procedures that make choices
to efficiently explore part of the search space, so as to make problems tractable.
Metaheuristics usually have several parameters to adjust their behavior depend-
ing on the problem to solve [3]. Examples of metaheuristics include genetic al-
gorithms, tabu search, local search and simulating annealing.



2 J. Duque et al.

Metaheuristics operate on two main working principles: intensification and
diversification. The former refers to the method’s ability to explore more deeply a
promising region of the search space, while the latter refers to the exploration of
different regions of the search space. By design, some metaheuristics methods are
better at intensifying the search while others are so at diversifying it. However,
the behavior of most metaheuristics can be controlled via a set of parameters. A
fine tuning of these parameters is therefore crucial to achieve an effective trade-
off between intensification and diversification, and hence good performance in
solving a given problem. Unfortunately, selecting the best set of parameters is
a tedious and error-prone task. This process is even harder because the best
parameters values vary with the problem structure and even just for different
instances of the same problem, as stated by the Non-Free-Lunch theorem [4].

Each metaheuristic has its own strengths and weaknesses, which may vary
according to the problem or even to the instance being solved. The trend is thus
to design hybrid metaheuristics, which combine diverse methods in order to
benefit from the individual advantages of each one [5]. However, this increases
the number of parameters (parameters of individual metaheuristics and new
parameters to control the hybridization). The design and implementation of a
hybrid metaheuristic is a complex process; tuning the resulting parameters, to
reach the best performance, is also very challenging.

Despite the good results obtained using hybrid metaheuristics, it is still nec-
essary to reduce the processing times needed for the hardest instances [6]. One of
the most plausible options entails parallelism [7]. In parallel metaheuristics one
can have multiple instances of the same (or different) metaheuristics running in
parallel, either independently or cooperatively through concurrent process com-
munications [8,9]. Not only does parallelism help to decrease processing time,
but it can also be a means to easily implement hybridization.

In previous work we proposed a Cooperative Parallel Local Search solver,
called CPLS [10,11]. CPLS embeds various simple local search metaheuristics
and then relies on cooperative parallelization to concurrently execute several
metaheuristic instances, which cooperate during the search process. We later
extended CPLS, by proposing PHYSH (Parallel HYbridization of simple Heuris-
tics) [12,13]. PHYSH supports the combination of population-based and single-
solution metaheuristics. CPLS and PHYSH also require the fine tuning of a
larger number of parameters, since more metaheuristics (of different types) are
involved. Moreover, the configuration of the parallel interaction itself (communi-
cation between the methods) involves yet another set of parameters which need
to be adjusted. Tuning this increasing number of parameters makes it even more
difficult to find the appropriate setting for the algorithm to behave optimally.

Automating the task of finding good parameters is thus desirable and has
attracted significant attention from researchers. We may identify two kinds of
strategies for automatic tuning: parameter tuning and parameter control [14].
In parameter tuning (off-line tuning) the set of parameters are defined before
applying the algorithm to a specific problem (static definition of parameters).
Several strategies for automatic parameter tuning of metaheuristics have been



Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics 3

proposed [15,16]. In contrast, parameter control strategies (online-tuning) adapts
the values of the controlled parameters during the algorithm execution (dynamic
adaptation of parameters). The idea is to find the best parameters setting dur-
ing the solving process, using some mechanism to alter the parameter values
according to the algorithm performance.

Parameter tuning can be seen as a pre-process pass which is executed be-
fore the solving in order to determine the adequate values for parameters. This
does not affect the implementation of the solver. On the other hand, parameter
control has to be implemented in the kernel of the solver. The former may ap-
pear easier but when the number of parameters become large it is hard to use
in practice. Indeed, it usually requires many runs to identify the best param-
eter settings, making this a time-consuming process. These methods are often
limited by the number of parameters and the computational power available. In
that case, parameter control strategies emerge as a viable solution to deal with
the high complexity of current solvers (hybrid and/or parallel).

In this paper we propose a parallel hybrid method with a parameter con-
trol strategy for solving the QAP, called DPA-QAP. DPA-QAP embeds mul-
tiple metaheuristic methods in a parallel hybrid execution and self-adapts the
parameters of the metaheuristics using an iterative process, adaptation is per-
formed based on performance measures. We carried out an experimental eval-
uation which shows that the auto-parametrization strategy outperforms a sim-
pler version of DPA-QAP with no auto-parametrization, i.e., a parallel hybrid
method with static parametrization. We perform the evaluation using the clas-
sical QAPLIB instances and also a particular set of very hard QAP instances.

In the remaining of this paper we present the related work on Section 2. Sec-
tion 3 presents the general structure of DPA-QAP and Section 4 introduces the
auto-parametrization strategy. Section 5 contains the experimental evaluation
performed which validates our strategy. A short conclusion ends the paper.

2 Related work

The Quadratic Assignment Problem (QAP) was first proposed by Koopmans
and Beckmann in 1957 [17] as a model for a facilities location problem. This
problem consists in assigning a set of n facilities to a set of n locations, while
minimizing the cost associated with the flows of items among facilities and the
distance between them.

Metaheuristic methods have been successfully applied for solving QAP. From
the 90s, several metaheuristic methods have emerged as a suitable option to solve
this problem, e.g., Tabu Search [18], Genetic Algorithms [19], among several oth-
ers. These methods perform well on a wide range of QAP instances, however,
some hard instances still require very long runs to achieve quality solutions.
Moreover, no method was able to get good performance on an extensive set of in-
stances. The aforementioned problems spurred the emergence of new techniques
based on hybridization and parallelization. For instance, one of the fundamental
methods of hybrid metaheuristics is the memetic algorithm (MA) [20]. MA is an



4 J. Duque et al.

effective approach which combines an evolutionary algorithm with a local search
procedure. Hybrid metaheuristics are intricate procedures, tricky to design, im-
plement, debug and tune, therefore, it is unsurprising that hardly any of them
only combine more that a couple of methods.

Parallelizing metaheuristics grants access to using powerful computational
platforms with the aim of speeding up the search process [21]. A straightforward
implementation of parallel metaheuristics is the Independent multi-walks ap-
proach which speeds up the search process by performing concurrent executions
of multiple metaheuristic instances, therefore augmenting the probability to get
quickly a good solution [22]. Another kind of parallel metaheuristics allows the
concurrent instances to cooperate by exchanging information during the search
process, aiming to improve the efficiency of the solver [23,24]. We identify these
methods as Cooperative multi-walk approaches.

We proposed a way to create hybridization through cooperative paralleliza-
tion in our CPLS framework [10,11]. CPLS allows the user to code the individual
metaheuristics, and the framework manages parallelism and communications. In
CPLS, different local search metaheuristics concurrently interact by exchang-
ing relevant information about the search. This interaction provides a cooper-
ative way to intensify the search. This framework has been successfully used
to solve hard variants of Stable Matching Problems [25] and hard instances of
QAP [26,11]. Since CPLS does not support population-based methods, we pro-
posed an extension of the framework called PHYSH [12,13], which provides an
efficient strategy to promote cooperation between population-based and single-
solution methods, metaheuristics of a different nature. Both CPLS and PHYSH
have proved able to efficiently solve several hard QAP instances.

Parallel hybrid metaheuristics often have many parameters which modify the
algorithm behaviour. Setting these parameters has influence on the performance
of the method, however, finding the optimal values for these parameters is usu-
ally a hard task [15]. Using hybridization and parallelism makes this task even
more difficult for mainly two reasons: First, hybrid metaheuristics inherit the
parameters of each “low level” metaheuristic, so one needs to find the setting of
more parameters, since a parameter configuration for one algorithm usually is
not suitable for another. Second, cooperative parallel strategies require parame-
ters to define their behaviour, e.g., for determining how frequently metaheuristics
should interact or how each metaheuristic has to use the received information,. . .

Tuning metaheuristic parameters (i.e., offline-tuning) has been carried out
in different ways, in earlier times the tuning process was done by hand, another
approach was to take parameters values from similar algorithms reported in
the literature. More recently, the use of specialized tools for automatic parame-
ter tuning has become prevalent, these techniques use advanced methodologies
and tools from a theory of experiment design to machine learning approaches,
among others [27]. Several methods have been proposed for parameter tuning,
for instance F-Race [28], ParamILS [15], SMAC [16], HORA [29]. However, these
methods have limitations when tuning a large number of parameters or when
they require significant computational resources to perform the test runs [14].



Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics 5

Parameter control (online-tuning) emerges as a reasonable option. Some
strategies have been proposed for specific metaheuristics such as [30] for swarm
intelligence and [31] for evolutionary algorithms. Also, some specific strategies
has been proposed for the QAP, such as [32] which proposes a strategy for self-
control parameters on a Tabu Search method.

Hyper-heuristics present another way to face the problem of metaheuristic
parameter control. These form a novel research approach in which a high level
strategy selects or generates the best metaheuristics with their respective pa-
rameters and acceptance criteria. Aiming to have more general methods, not
designed for a single problem or for a few instances of a problem [33]. To the
best of our knowledge, only one hyperheuristic method solves the QAP and uses
parallelism in its design [34]: the authors propose a parameter control method
using a genetic algorithm (GA) acting as a high-level strategy in the hyper-
heuristic approach. The GA, generation by generation, performs the adaptation
of parameters through cross-over and mutation operators, ending up with the
parameters at their best adjustment for each method.

We achieve a form of hyperheuristic using cooperative parallelism. The key
idea is to use the parallel computational power to not only create a hybrid meta-
heuristic but also to automatically control the parameters of the metaheuristic
involved in the parallel hybrid method.

3 DPA-QAP method

This section presents the general structure of DPA-QAP, a Dynamic Parameter
Adaptation method for solving the Quadratic Assignment Problem. DPA-QAP
is build on the top of a parallel hybrid metaheuristic solver, similar to the one
presented in [11]. Figure 1 presents the two main components of DPA-QAP, the
Worker nodes and a Master node (workers and master to simplify). Workers run
a set of metaheuristics, in parallel, carrying out the search process. We design
each worker to run in a separate thread, ideally bound to its own dedicated core,
each thread runs a specific metaheuristic instance.

Fig. 1: DPA-QAP top-level view.



6 J. Duque et al.

Each worker reports periodically its current candidate solution and some con-
textual information (e.g., solution cost, performance metrics, etc.) to the master,
which stores best intermediate solutions into an elite pool. When the master re-
ceives a solution from a worker, it merges it into the elite pool. If the incoming
solution is already present, it gets mutated by performing two random swaps.
This mechanism promotes some diversity for the candidate solutions in the pool.
When the elite pool is full, the master sends solutions to workers, ensuring the
receiver implements a different metaheuristic from the one that inserted that so-
lution into the pool. This process constitutes a flexible interaction feature which
eases the hybridization of metaheuristics promoting cross-fertilization among
different types. The size of this pool is equal to the number of workers, since the
pool must have a solution for each method.

On the top of this cooperative parallel search, DPA-QAP implements a dy-
namic adaptation strategy which is tasked to automatically adjust the param-
eters of the metaheuristics during their execution, looking for the best setting
and trying to ensure a balance between intensification and diversification.

3.1 Metaheuristics used in the DPA-QAP method

We select three different metaheuristic methods for the workers: Robust Tabu
Search (RoTS), Extremal Optimization (EO), and Multistart Local Search (MLS).
We select these metaheuristics because they are commonly used in combinato-
rial optimization problems particularly for the QAP. We now present a brief
description of each of these methods.

Robust Tabu Search The name Tabu Search (TS) refers to the use of an
adaptive memory and special problem-solving strategies, to get a better local
search method [35]. The idea is to memorize within a structure the elements
that for the LS will be forbidden to use (tabu) and thus avoid getting trapped in
local optima. TS looks for the best solution within the neighborhood but does
not visit the solutions of previous neighbors if they have been visited before or
have been marked as prohibited locations [34]. RoTS is an adaptation of TS to
the QAP and has been one of the best performing methods for this problem [18].

Extremal Optimization EO is a metaheuristic inspired by self-organizing
processes as frequently found in nature: for EO this is self-organized criticality
(SOC). The version proposed by [36] has only one adjustable parameter: τ ,
and uses of a Probability Distribution Function (PDF). EO proceeds like this:
it inspects all candidate configurations assigning a fitness value, by means of
the goal function. The configurations are then ranked from worst to best. EO
resorts to the PDF to choose a solution from organized configurations. The role
of the τ parameter is to provide different search strategies from pure random
walk (τ = 0) to deterministic (greedy) search (τ ⇒ ∞). In previous work, we
extended the basic EO metaheuristic to support not only a power-law PDF, but
also an exponential and a gamma-law PDFs [26].

Multistart Local Search Local Search (LS) is one of the oldest and most
frequently used metaheuristics. LS starts from an initial solution and repeatedly
improves it within a defined neighborhood. Neighbor solutions can be generated



Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics 7

by applying minor changes to the initial solution. LS ends when no improved
solutions are found in the neighborhood achieving a local optima [37]. Multistart
Local Search (MLS) is a modification of LS that iteratively performs multiple
different searches, executing each LS from a different starting point. When MLS
reaches a local optimum, it tries to escape by restarting the search from scratch
or performing some random moves in the current solution.

Table 1: Metaheuristic’s parameter ranges (n stands for QAP instance’s size).
Metaheuristic Parameter name Range

RoTS
Tabu duration factor [4n - 20n]

Aspiration factor [n2 - 10n2]

EO
PDF Power - Exponential - Gamma

τ [0,1]

MLS Start type Restart from scratch - Random swaps

Metaheuristics Parameters Table 1 presents the parameters considered
for each metaheuristic, together with the range of variation for each parameter.
These ranges are picked from the best performances, as reported in the literature.
For RoTS we use the parameters reported in [18], for EO we select the parameters
reported in [26] and for MLS, the only parameter used is the restart process,
then no range is needed.

4 Automatic Parameter Adaption in DPA-QAP

The DPA-QAP method operates within an iterative process. At the beginning,
workers are initialized with random parameters. DPA-QAP dynamically adapts
the best setting of parameters in every worker (which is executing a metaheuristic
instance). Parameter control depends on the performance in the solving process
for an individual worker at each iteration. Each worker periodically reports rel-
evant information to the master. With this information, the master evaluates
the worker’s performance and tweaks its parameters, trying to strike a balance
between intensification and diversification in the search. Figure 2 depicts the
flow diagram of this process. Gray boxes represent the functionality executed by
workers, in parallel. White boxes specify the iterative adaptation process by the
master. The master waits while the workers perform the search. When it receives
a metaheuristic report, it develops a performance evaluation for each worker and
executes the parameters’ adaptation procedure. The master then sends a new,
evolved, set of parameters and a new configuration back to the workers. Workers
resume the search with the settings they received: parameters and restarting
from a new initial solution (from the master’s elite pool). DPA-QAP repeats
this process until an established number of iterations is accomplished or when
the solution target is reached.



8 J. Duque et al.

Fig. 2: DPA-QAP flow diagram.

4.1 Metaheuristics Performance Metrics

At each iteration of the parameters’ adaptation process, each metaheuristic runs
for a given time, iteration time. When the iteration time is running out,
workers report to the master the initial solution and the best found solution in
the interval with theirs associated costs. In order to assess the performance of a
worker using a specific set of parameters, the master computes the distance be-
tween the initial and final solution (pair-wise difference) and the percentage gain
for that iteration. The percentage gain is defined as: gain =

costinitial−costfinal

costinitial
.

Evaluating the performance of the metaheuristics is a critical process, and
selecting the right set of metrics affects the overall performance of the param-
eters’ adaptation process. In this work we consider two classical metrics, the
percentage gain in the cost of the objective function and the distance between
solutions. The gain acts as a direct indicator of the metaheuristic’s performance,
meanwhile the distance is assessing how diverse the search is. Other metrics can
be also considered, for instance, the time spend on local optima, the number of
iterations without improvements, among many others.

4.2 Performance Evaluation

The parameters’ adaptation process evaluates the workers’ performance by pro-
cessing the percentage gain and the similarity between the initial and final solu-
tion. Through experimentation we verify that the gain is usually bigger at initial
stages of the search than at the final stage. For this reason, DPA-QAP changes
the value of the diversification gain limit during the search process, inspired
by how the temperature decreases in simulated annealing [38]. Figure 3 shows
how the diversification gain limit decreases in DPA-QAP during the search pro-
cess. Using this dynamic limit, DPA-QAP diversifies the search more easily at
the beginning than at the end of the search process. The similarity criterion is
computed comparing the distance between the initial and final solutions. If this
distance is lower than one-third of the QAP size (i.e., 66% of the variables are
equal), we consider both solutions as “very similar”.

Considering these two criteria, we defined the following rules to determine
which action must be taken for adapting the worker’s parameters: If the gain
obtained by the method and its pair-wise difference is lower than the corre-
sponding limits, the component adapts the metaheuristic parameters to diver-
sify the search. If the gain is higher than the corresponding diversification gain



Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics 9

limit or the pair-wise difference is higher than the distance solution limit, the
component adapts the parameters to intensify the search. Both the dynamic
diversification limits and the distance solution limit are hyper-parameters of the
auto-parametrization strategy. We plan to test different limits in future work.

Adapting the Parameters. The evaluation of the worker’s performance
outputs a mandate which can be, intensify or diversify. This output is used as
input for the parameters adaptation process. For each possible case we define a
behavior depending of the metaheuristic type.

In EO the parameter τ is in the range 0 to 1 and, depending on its value and
the PDF, this may lead the metaheuristic to intensify or diversify the search,
by adding or subtracting a delta value belonging to the range (see Figure 4).
The parameters are then adjusted by adding to their values using deltas, so the
master performs a search process that looks for the best parameters setting for
a given metaheuristic.

Fig. 3: Gain diversification limits.

Fig. 4: EO parameters adapta-
tion.

We define the parameter adaptation process for Robust Tabu search as fol-
lows: if the parameter adaptation component returns diversify, a delta of n/2
is added to the tabu duration and a delta of n2/2 is added to the aspiration
parameters. If the parameter adaptation component returns intensify, the tabu
duration is subtracted by n/2 and the aspiration is decreased by n/2. For inten-
sification, the delta for the adaptation of the aspiration parameter is different to
diversification. This is done intending to slow down the intensification process,
avoiding to stagnates on a local optimum. For the case of MLS, if there is any
gain in cost, the type of restart is retained. If there is no gain, the algorithm
changes to the other option.

5 Experimental Evaluation

In this section we present an experimental evaluation of our proposed method,
DPA-QAP, comparing its performance against an independent parallel hybrid
metaheuristic method. We consider three sets of very hard benchmarks: the
20 hardest instances of QAPLIB [39] and two sets of even harder instances:



10 J. Duque et al.

Drezner’s [40] dreXX and Palubeckis’s [41] InstXX instances. Each instance
is executed 30 times stopping as soon as the Best Known Solution (BKS) is
found or when a time limit of 5 minutes is hit, in case the BKS is not reached.
All experiments have been carried out on a quad-AMD Opteron 6380 system,
totaling 64 cores running at 2.5GHz and 128 GB of RAM.

At present, DPA-QAP is systematically configured with 30 worker nodes:
10 running RoTS, 10 running EO and 10 running MLS. Each worker node ran-
domly initializes each parameter of its metaheuristic by randomly picking a value
from the admissible values (see Table 1). These parameters are then periodically
adapted as explained in the previous section. In this experiment, parameter con-
trol is triggered every 15 or 20 seconds, depending on the size of the problem.
Each metaheuristic can thus adapt its parameters up to 20 times during the
5 minutes global execution cap. We plan to study the impact of varying this
interval and determine if it is also possible and useful to dynamically adapt it.

We compare DPA-QAP to a base solver (BASE-QAP) which is statically
parametrized (this solver is actually derived from DPA-QAP by disabling the
parameter control mechanisms). Other than that, BASE-QAP is identical to
DPA-QAP: it also creates 30 metaheuristic instances (10 of each type of meta-
heuristic); each metaheuristic instance also randomly initializes its parameters,
which instead remain fixed during the execution. Our goal is to compare this pre-
process parameterization (parameters fixed) with self-parameterization. Usually
the parameter tuning pre-process is a time-consuming task, the idea is to avoid
this offline tuning step by having an online method able to adapt its parameters
meanwhile the problem solution is carry out.

Both methods are similarly implemented in Java 11 using the ForkJoinPool

and AtomicType classes to handle the parallelism in a shared memory model 4.
In all cases we made sure that each worker node is actually mapped by the JVM
onto a different physical core, at runtime.

5.1 Evaluation on QAPLIB

We evaluated the performance of the DPA-QAP on QAPLIB, a well-known
collection of 134 QAP problems of various sizes and difficulties [39]. The instances
are named as nameXX where name corresponds to the first letters of the author
and XX is the size of the problem. For each instance, QAPLIB also includes the
Best Known Solution (BKS), which is sometimes the optimum. Many QAPLIB
instances are easy for a parallel solver, we therefore selected the 20 hardest
ones (removing all systematically solved instances). We ran both DPA-QAP and
BASE-QAP under the same conditions (30 repetitions, time limit of 5 minutes).

Table 2 presents the results. For each solver, the table lists the number of
times the BKS is reached across the 30 executions (#BKS), the Average Per-
centage Deviation (APD), which is the average of the 30 relative deviation
percentages computed as follows: 100 × Avg−BKS

BKS , where Avg is the average of
the 30 found costs, and finally the average execution time (Time). Execution

4 Source code and instances can be found here.

https://github.com/JonathanDuque/QAPMetaheuristic/tree/DPA-QAP


Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics 11

times are given in seconds (as a decimal number). This time is the elapsed (wall
clock) time, and includes the time to install all solver instances, solve the prob-
lem, communications and the time to detect and propagate the termination. To
compare the performance of both solvers, we first compare the number of BKS
found, then (in case of tie), the APDs and finally the execution times. For each
benchmark, the best-performing solver row is highlighted and the discriminant
field is enhanced in bold font.

DPA-QAP outperforms BASE-QAP on 14 out of 20 of the hardest QAPLIB
instances, while the reverse only occurs for 6 instances. 7 instances can never
been solved by any solver. Clearly, a time limit of 5 minutes is too short for those
hard problems: we plan to experiment with larger time limits. The “summary”
row shows that DPA-QAP obtains a better #BKS than BASE-QAP (192 vs. 153,
a 25% increase). The average APD is also better (0.174 vs. 0.180). Notice that
solutions of better quality are obtained in a slightly shorter average execution
time (269.5sec vs. 276.7sec).

Notice that BASE-QAP is indeed an efficient solver for this benchmark, it
implements a parallel hybridization strategy and its parameters, despite be-
ing randomly initialized, are selected within a range taken from state-of-the-art
solvers which report competitive results. Still, DPA-QAP managed to outper-
form BASE-QAP in most instances.

Table 2: Evaluation of dynamic adaptation on 20 hardest instances of QAPLIB.

DPA-QAP BASE-QAP

BKS #BKS APD Time #BKS APD Time

sko72 66256 28 0.010 130.9 24 0.012 161.2
sko81 90998 20 0.012 209.6 10 0.011 242.3
sko90 115534 9 0.022 262.2 8 0.016 274.9
sko100a 152002 12 0.027 245.0 4 0.029 279.3
sko100b 153890 20 0.012 223.1 14 0.014 242.9
sko100c 147862 27 0.010 268.7 20 0.010 287.2
sko100d 149576 6 0.024 287.7 9 0.021 285.9
sko100e 149150 20 0.012 266.1 16 0.015 271.2
sko100f 149036 8 0.018 267.8 9 0.017 265.9
tai40a 3139370 4 0.082 272.7 3 0.085 290.6
tai50a 4938796 0 0.386 300.0 0 0.401 300.0
tai60a 7205962 0 0.479 300.0 0 0.519 300.0
tai80a 13499184 0 0.689 300.0 0 0.780 300.0
tai100a 21044752 0 0.647 300.0 0 0.685 300.0
tai80b 818415043 14 0.031 282.1 13 0.028 254.5
tai100b 185996137 5 0.084 282.9 10 0.077 285.3
tai150b 498896643 0 0.654 300.0 0 0.601 300.0
tai256c 44759294 0 0.183 300.0 0 0.179 300.0
tho150 8133398 0 0.095 300.0 0 0.086 300.0
wil100 273038 19 0.011 292.0 13 0.013 293.0

Summary 192 0.174 269.5 153 0.180 276.7



12 J. Duque et al.

5.2 Evaluation on harder instances

We evaluated DPA-QAP on two more sets of instances, artificially crafted to be
very difficult for metaheuristics: the dreXX instances proposed by Drezner [40]
and the InstXX instances by Palubeckis [41]. These problems are generated with
a known optimum. For this test we used the same machine and configuration as
for QAPLIB (30 cores and a time limit of 5 min with 30 repetitions).

Table 3 presents the results for Drezner’s instances. We have omitted small
instances which are systematically solved by both solvers in less than 15 seconds.
We start with dre42 which is solved by both solvers at each replication; even
on this case DPA-QAP is much faster than BASE-QAP: 34sec vs. 61sec. In all
instances, DPA-QAP outperforms BASE-QAP. As a whole, DPA-QAP reaches
more BKS (60 vs. 38) and, when the optimum is not reached, solutions provided
by DPA-QAP are of much better quality than BASE-QAP as shown by the
APDs (23.558 vs. 32.408), and it does so in a shorter period of time.

Table 3: Evaluation on Drezner in-
stances.

DPA-QAP BASE-QAP

#BKS APD Time #BKS APD Time

dre42 30 0.0 34 30 0.0 61
dre56 21 14.1 213 8 21.0 259
dre72 9 27.4 265 0 34.9 300
dre90 0 22.1 300 0 28.0 300
dre110 0 36.1 300 0 52.1 300
dre132 0 41.7 300 0 58.3 300

SMRY 60 23.6 235 38 32.4 254

Table 4: Evaluation on Palubeckis’ in-
stances.

DPA-QAP BASE-QAP

#BKS APD Time #BKS APD Time

Inst40 29 0.15 108 26 0.17 151
Inst50 23 0.10 199 18 0.12 238
Inst60 20 0.16 188 11 0.15 249
Inst70 9 0.12 267 3 0.16 293
Inst80 2 0.18 292 2 0.19 292
Inst100 0 0.18 300 0 0.18 300
Inst150 0 0.14 300 0 0.14 300
Inst200 0 0.14 300 0 0.14 300

SMRY 83 0.15 244 60 0.16 265

Table 4 presents the results for Palubeckis’ instances. As in the previous
case, we did not include small instances which are systematically solved by both
solvers in less than 15 seconds. Here again, DPA-QAP performs better than
BASE-QAP on all instances of the benchmark. As for Drezner’s instances, the
time limit of 5 minutes appears too short to solve large instances. However,
DPA-QAP does find more BKS (83 vs. 60) and dynamic parameter adaptation
makes it possible to improve the quality of solutions wrt. BASE-QAP as shown
by the APDs (0.147 vs. 0.157).

6 Conclusions and future work

We have proposed a dynamic parameter adaptation scheme for parallel and hy-
brid solvers based on metaheuristics to solve the QAP. The basic principle of
this approach is to have a master node which periodically collects the progress
of each metaheuristic. This node has a global view of the overall search progress,



Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics 13

therefore it can provide each metaheuristic with new parameter values in order
to increase its effectiveness. We proposed DPA-QAP: an implementation of this
architecture in Java, embedding three well-known metaheuristics: Robust Tabu
Search, Extremal Optimization and Multistart Local Search. The first experi-
ments performed on very difficult instances of QAP validate our approach by
significantly improving solution quality.

We plan to extend this work in several directions. First, we will experiment
on machines with more cores and with time limits greater than the 5 minutes cap
which was allowed in this work. We will also try to determine the best settings
for parameter reporting and adjustment: in this experiment we used a constant
interval which needs to be refined. Another line of potential experiments consists
in including efficient metaheuristics, such as Ant Colony Optimization [42]; or
embedding population-based methods, e.g. genetic algorithms. Finally, we plan
to address larger instances of the QAP as well as other difficult problems. As an
outcome, we aim to design and propose a general framework for self-adaptation
able to address a wide variety of combinatorial search and optimization problems.

Acknowledgements. This research was supported by the CODI project PRV19-
1-01 funded by the University of Antioquia in Medelĺın, Colombia.

References

1. Bhati, R.K., Rasool, A.: Quadratic Assignment Problem and its Relevance to the
Real World: A Survey. International Journal of Computer Applications 96 (2014)
42–47

2. Abdel-Basset, M., Manogaran, G., Rashad, H., Zaied, A.N.H.: A comprehensive re-
view of quadratic assignment problem: variants, hybrids and applications. Journal
of Ambient Intelligence and Humanized Computing 0 (2018) 1–24

3. Boussäıd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics.
Information Sciences 237 (2013) 82–117

4. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1 (1997) 67–82

5. Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combi-
natorial optimization: A Survey. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics) 7505 LNCS (2011) 1–10

6. Saifullah Hussin, M.: Stochastic Local Search Algorithms for Single and Bi-
objective Quadratic Assignment Problems. PhD thesis, Université de Bruxelles
(2016)

7. Crainic, T.G., Toulouse, M.: Parallel Meta-heuristics. In Gendreau, M., Potvin,
J.Y., eds.: Handbook of Metaheuristics. Volume 146 of International Series in Op-
erations Research & Management Science. Springer US (2010) 497–541

8. Caniou, Y., Codognet, P., Richoux, F., Diaz, D., Abreu, S.: Large-scale parallelism
for constraint-based local search: the costas array case study. Constraints 20 (2014)
1–27

9. Silva, A., Coelho, L.C., Darvish, M.: Quadratic assignment problem variants: A
survey and an effective parallel memetic iterated tabu search. European Journal
of Operational Research (2020)



14 J. Duque et al.

10. Munera, D., Diaz, D., Abreu, S., Codognet, P.: A Parametric Framework for Co-
operative Parallel Local Search. In: European Conference on Evolutionary Compu-
tation in Combinatorial Optimization (EvoCOP). Volume 8600., Granada, Spain
(2014)

11. Munera, D., Diaz, D., Abreu, S.: Hybridization as Cooperative Parallelism for
the Quadratic Assignment Problem. In: 10th International Workshop, HM 2016.
Volume 9668 of Lecture Notes in Computer Science., Plymouth, UK, Springer
International Publishing (2016) 47–61

12. López, J., Múnera, D., Diaz, D., Abreu, S.: Weaving of Metaheuristics with Co-
operative Parallelism. In Auger, A., Fonseca, C.M., Lourenço, N., Machado, P.,
Paquete, L., Whitley, D., eds.: Parallel Problem Solving from Nature – PPSN XV.
Volume 11101 LNCS., Cham, Springer International Publishing (2018) 436–448

13. Lopez, J., Munera, D., Diaz, D., Abreu, S.: On integrating population-based meta-
heuristics with cooperative parallelism. In: Proceedings - 2018 IEEE 32nd Interna-
tional Parallel and Distributed Processing Symposium Workshops, IPDPSW 2018.
(2018)

14. Huang, C., Li, Y., Yao, X.: A Survey of Automatic Parameter Tuning Methods
for Metaheuristics. IEEE Transactions on Evolutionary Computation 24 (2020)
201–216

15. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an Automatic
Algorithm Configuration Framework. Journal of Artificial Intelligence Research
36 (2009) 267–306

16. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics) 6683 LNCS (2011) 507–523

17. Koopmans, T.C., Beckmann, M.: Assignment Problems and the Location of Eco-
nomic Activities. Econometrica 25 (1957) 53–76

18. Taillard, E.: Robust taboo search for the quadratic assignment problem. Parallel
Computing 17 (1991) 443–455

19. Tate, D.M., Smith, A.E.: A genetic approach to the quadratic assignment problem.
Computers & Operations Research 22 (1995) 73–83

20. Moscato, P., Cotta, C., Mendes, A.: Memetic Algorithms. In: Handbook of Heuris-
tics. Volume 1-2. Springer Berlin / Heidelberg (2004) 53–85

21. Cotta, C., Talbi, E.G., Alba, E.: Parallel Hybrid Metaheuristics. In: Parallel
Metaheuristics. John Wiley & Sons, Inc., Hoboken, NJ, USA (2005) 347–370

22. Codognet, P., Munera, D., Diaz, D., Abreu, S.: Parallel local search (2018)

23. Talbi, E.G., Bachelet, V.: COSEARCH: A parallel cooperative metaheuristic. Jour-
nal of Mathematical Modelling and Algorithms 5 (2006) 5–22

24. Loukil, L., Mehdi, M., Melab, N., Talbi, E.G., Bouvry, P.: A parallel hybrid genetic
algorithm-simulated annealing for solving Q3AP on computational grid. IPDPS
2009 - Proceedings of the 2009 IEEE International Parallel and Distributed Pro-
cessing Symposium (2009)

25. Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: Solving
Hard Stable Matching Problems via Local Search and Cooperative Parallelization.
In: AAAI, Austin, TX, USA (2015)

26. Munera, D., Diaz, D., Abreu, S.: Solving the Quadratic Assignment Problem with
Cooperative Parallel Extremal Optimization. In: The 16th European Conference
on Evolutionary Computation in Combinatorial Optimisation, Porto (2016)



Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics 15

27. Hoos, H.: Automated Algorithm Configuration and Parameter Tuning. In Hamadi,
Y., Monfroy, E., Saubion, F., eds.: Autonomous Search. Springer Berlin Heidelberg,
Berlin (2012) 37–71

28. Birattari, M., Kacprzyk, J.: Tuning metaheuristics: a machine learning perspective.
Volume 197. Springer (2009)

29. Barbosa, E.B., Senne, E.L.: A heuristic for optimization of metaheuristics by
means of statistical methods. ICORES 2017 - Proceedings of the 6th International
Conference on Operations Research and Enterprise Systems 2017-January (2017)
203–210

30. Parpinelli, R.S., Plichoski, G.F., Silva, R.S.D., Narloch, P.H.: A review of tech-
niques for online control of parameters in swarm intelligence and evolutionary
computation algorithms. International Journal of Bio-Inspired Computation 13
(2019) 1–20

31. Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary
algorithms: Trends and challenges. IEEE Transactions on Evolutionary Computa-
tion 19 (2014) 167–187

32. Fescioglu-Unver, N., Kokar, M.M.: Self Controlling Tabu Search algorithm for the
Quadratic Assignment Problem. Computers & Industrial Engineering 60 (2011)
310–319

33. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A
Classification of Hyper-Heuristic Approaches: Revisited. In: International Series in
Operations Research and Management Science. Springer Berlin Heidelberg (2019)
453–477

34. Dokeroglu, T., Cosar, A.: A novel multistart hyper-heuristic algorithm on the
grid for the quadratic assignment problem. Engineering Applications of Artificial
Intelligence 52 (2016) 10–25

35. Glover, F.: Tabu search—part II. ORSA Journal on Computing 2 (1990) 4–32
36. Boettcher, S., Percus, A.: Nature’s way of optimizing. Artificial Intelligence 119

(2000) 275–286
37. Yagiura, M., Ibaraki, T.: Local Search (2002)
38. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.

Science 220 4598 (1983) 671–80
39. Burkard, R.E., Karisch, S., Rendl, F.: QAPLIB - a Quadratic Assignment Problem

Library. European Journal of Operational Research 55 (1991) 115–119
40. Drezner, Z.: The Extended Concentric Tabu for the Quadratic Assignment Prob-

lem. European Journal of Operational Research 160 (2005) 416–422
41. Palubeckis, G.: An Algorithm for Construction of Test Cases for the Quadratic

Assignment Problem. Informatica, Lith. Acad. Sci. 11 (2000) 281–296
42. Hani, Y., Amodeo, L., Yalaoui, F., Chen, H.: Ant colony optimization for solving an

industrial layout problem. European Journal of Operational Research 183 (2007)
633–642


	Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics

