
Yet Another Local Search Method for Constraint Solving

Philippe Codognet
University of Paris 6

LIP6, case 169
8, rue du Capitaine Scott
75 015 Paris, FRANCE

and INRIA-Rocquencourt
Philippe.Codognet@lip6.fr

Daniel Diaz
University of Paris 1
CRI, bureau C1407
90, rue de Tolbiac

75 634 Paris Cedex 13, FRANCE
and INRIA-Rocquencourt

Daniel.Diaz@inria.fr

Abstract
We propose a generic, domain-independent local search
method called adaptive search for solving Constraint Sat-
isfaction Problems (CSP). We design a new heuristics that
takes advantage of the structure of the problem in terms
of constraints and variables and can guide the search more
precisely than a global cost function to optimize (such as
for instance the number of violated constraints). We also
use an adaptive memory in the spirit of Tabu Search in or-
der to prevent stagnation in local minima and loops. This
method is generic, can apply to a large class of constraints
(e.g. linear and non-linear arithmetic constraints, symbolic
constraints, etc) and naturally copes with over-constrained
problems. Preliminary results on some classical CSP prob-
lems show very encouraging performances.

Introduction
Heuristic (i.e. non-complete) methods have been used in
Combinatorial Optimization for finding optimal or near-
optimal solutions since a few decades, originating with the
pioneering work of Lin on the Traveling Salesman Problem
(10). In the last few years, the interest for the family of
Local Search methods for solving large combinatorial prob-
lems has been revived, and they have attracted much atten-
tion from both the Operations Research and the Artificial
Intelligence communities, see for instance the collected pa-
pers in (1) and (19), the textbook (12) for a general intro-
duction, or (for the French speaking reader) (8) for a good
survey. Although local search techniques have been asso-
ciated with basic hill-climbing or greedy algorithms, this
term now encompasses a larger class of more complex meth-
ods, the most well-known instances being simulated anneal-
ing, Tabu search and genetic algorithms, usually referred as
“meta-heuristics”. They work by iterative improvement over
an initial state and are thus anytime algorithms well-suited
to reactive environments. Consider an optimization problem
with cost function which makes it possible to evaluate the
quality of a given configuration (assignment of variables to
current values) and a transition function that defines for each
configuration a set of ”neighbors”. The basic algorithm con-
sists in starting from a random configuration, explore the

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

neighborhood, select an adequate neighbor and then move
to the best candidate. This process will continue until some
satisfactory solution is found. To avoid being trapped in
local optima, adequate mechanisms should be introduced,
such as the adaptive memory of Tabu search, the cooling
schedule of simulated annealing or similar stochastic mech-
anisms. Very good results have been achieved by dedicated
and finely tuned local search methods for many problems
such as the Traveling Salesman Problem, scheduling, vehi-
cle routing, cutting stock, etc. Indeed, such techniques are
now the most promising approaches for dealing with very
large search spaces, when the problem is too big to be solved
by complete methods such as constraint solving techniques.

In the last years, the application of local search techniques
for constraint solving started to raise some interest in the
CSP community. Localizer (13; 14) proposed a general lan-
guage to state different kinds of local search heuristics and
applied it to both OR and CSP problems, and (17) integrated
a constraint solving component into a local search method
for using constraint propagation in order to reduce the size
of the neighborhoods. GENET (4) was based on the Min-
Conflict (15) heuristics, while (16) proposed a Tabu-based
local search method as a general problem solver but this ap-
proach required a binary encoding of constraints and was
limited to linear inequalities. Very recently, (7) developed
another Tabu-based local search method for constraint solv-
ing. This method, developed independently of our adap-
tive search approach, also used so-called “penalties” on con-
straints that are similar to the notion of “constraint errors”
that will be described later. It is worth noticing that the first
use of such a concept is to be found in (2).

We propose a new heuristic method called Adaptive
Search for solving Constraint Satisfaction Problem. Our
method can be seen as belonging to the GSAT (21), Walk-
sat (22) and Wsat(OIP) (25) family of local search methods.
But the key idea of our approach is to take into account the
structure of the problem given by the CSP description, and
to use in particular variable-based information to design gen-
eral meta-heuristics. This makes it possible to naturally cope
with heterogeneous problem descriptions, closer to real-life
application that pure regular academic problems.

Preliminary results on classical CSP benchmarks such as
the simple “N-queens” problem or the much harder “magic
square” or “all-intervals” problems show that the adaptive

search method performs very well w.r.t. traditional con-
straint solving systems.

Adaptive Search
The input of the method is a problem in CSP format, that is,
a set of variables with their (finite) domains of possible val-
ues and a set of constraints over these variables. A constraint
is simply a logical relation between several unknowns, these
unknowns being variables that should take values in some
specific domain of interest. A constraint thus restricts the
degrees of freedom (possible values) the unknowns can take;
it represents some partial information relating the objects of
interest. Constraint Solving and Programming has proved to
be very successful for Problem Solving and Combinatorial
Optimization applications, by combining the declarativity of
a high-level language with the efficiency of specialized al-
gorithms for constraint solving, borrowing sometimes tech-
niques from Operations Research and Numerical Analysis
(20). Several efficient constraint solving systems for finite
domain constraints now exists, such as ILOG Solver (18) on
the commercial side or clp(FD)(3) and GNU-Prolog (5) on
the academic/freeware side. Although we will completely
depart in adaptive search from the classical constraint solv-
ing techniques (i.e. Arc-Consistency and its extensions), we
will take advantage of the formulation of a problem as a CSP.
Such representation indeed makes it possible to structure the
problem in terms of variables and constraints and to analyze
the current configuration (assignment of variables to values
in their domains) more carefully than a global cost function
to be optimized, e.g. the number of constraints that are not
satisfied. Accurate information can be collected by inspect-
ing constraints (that typically involve only a subset of all
the problem variables) and combining this information on
variables (that typically appear in only a subset of all the
problem constraints).

Our method is not limited to any specific type of con-
straint, e.g. linear constraints as classical linear program-
ming or (25). However we need, for each constraint, an
”error” function that will give an indication on how much
the constraint is violated. For instance the ”error” function
associated to an arithmetic constraintX − Y < C will be
max(0, |X − Y | − C). Adaptive search relies on iterative
repair, based on variables and constraint errors information,
seeking to reduce the error on the worse variable so far. The
basic idea is to compute the error function of each constraint,
then combine for each variable the errors of all constraints
in which it appears, therefore projecting constraint errors on
involved variables. Finally, the variable with the maximal
error will be chosen as a ”culprit” and thus its value will be
modified. In this second step we use the well-known min-
conflict heuristics (15) and select the value in the variable
domain that has the best temptative value, that is, the value
for which the total error in the next configuration is minimal.

In order to prevent being trapped in local minima, the
adaptive search method also includes an adaptive memory as
in Tabu Search : each variable leading to a local minimum is
marked and cannot be chosen for the few next iterations. It
is worth noticing that conversely to most Tabu-based meth-
ods (e.g. (6) or (7) for a CSP-oriented framework) we mark

variables and not couples< variable, value >.
It is worth noticing that the adaptive search method is thus

a generic framework parametrized by three components :

• A family of error functions for constraints (one for each
type of constraint)

• An operation to combine for a variable the errors of all
constraints in which it appears

• A cost function for a evaluating configurations

In general the last component can be derived from the first
two one. Also, we could require the combination operation
to be associative and commutative.

General Algorithm
Let us first detail the basic loop of the adaptive search al-
gorithm, and then present some extra control parameters to
tune the search process.

Input :
Problem given in CSP form :

• a set of variablesV = {V1, V2, . . . , Vn} with associ-
ated domains of values

• a set of constraintsC = {C1, C2, . . . , Ck} with asso-
ciated error functions

• a combination function to project constraint errors on
variables

• a cost function to minimize

Output :
a sequence of moves (modification of the value of one
of the variables) that will lead to a solution of the CSP
(configuration where all constraints are satisfied).

Algorithm :
Start from a random assignment of variables in V

Repeat
1. Compute errors of all constraints in C and combine er-

rors on each variable by considering for a given vari-
able only the constraints on which it appears.

2. select the variable X (not marked as Tabu) with high-
est error and evaluate costs of possible moves from X

3. if no better move then mark X tabu for a given number
of iterations
else select the best move (min-conflict) and change
the value of X accordingly

until a solution is found or a maximal number of itera-
tions is reached

Some extra parameters can be introduced in the above
framework in order to control the search, in particular the
handling of (partial) restarts. One first has to precise, for a
given problem, theTabu tenureof each variable, that is, the
number of iteration a variable should not be modified once
it is marked due to local minima. Thus, in order to avoid be-
ing trapped with a large number of Tabu variables and there-
fore no possible diversification, we decide to randomly reset
a certain amount of variables when a given number of vari-
ables are Tabu at the same time. We thereafter introduce two

other parameters : thereset limit, i.e. the number of simul-
taneous Tabu variables to reach in order to randomly reset
a certain ratio of variables (reset percentage). Finally, as in
all local search methods, we parametrize the algorithm with
a maximal number of iterations (max iterations). This could
be used to perform early restart, as advocated by (22). Such
a loop will be executed at mostmax restarttimes before the
algorithm stops.

This method, although very simple, could nevertheless
be quite efficient to solve complex combinatorial problems
such as classical CSPs.

Examples
Let us now detail how the adaptive search method performs
on some classical CSP examples. We have tried to chose
benchmarks on which other constraint solving methods have
been applied in order to obtain comparison data. For each
benchmark we give a brief description of the problem and its
modeling in the adaptive search approach. Then, we present
performance data on an average of 10 executions, including:

• instance number (i.e. problem size)

• average, best and worst CPU time

• total number of iterations

• number of local minima reached

• number of performed swaps

• number of resets

Then we compare those performance results (essentially
the execution time) with other methods among the most
well-known constraint solving techniques: constraint pro-
gramming systems (5; 18), general local search system (13;
14), Ant-Colony Optimization (23). We have thus favored
academic benchmarks over randomly generated problems in
order to compare to literature data.

Obviously, this comparison is preliminary and not com-
plete but it should give the reader a rough idea of the poten-
tial of the adaptive search approach. We intend to make a
more exhaustive comparison in the near future.

Magic to the square
The magic square puzzle consists in placing on a NxN
square all the numbers in{1, 2, . . . , N2} such as the sum of
the numbers in all rows, columns and diagonal are the same.
It can therefore be modeled in CSP by consideringN2 vari-
ables with initial domains{1, 2, . . . , N2} together with lin-
ear equation constraints and a global alldifferent constraint
stating that all variables should have a different value. The
constant value that should be the sum of all lines, columns
and diagonals can be easily computed to beN(N2 + 1)/2.

The instance of adaptive search for this problem is defined
as follows. The error function of an equationX1+X2+. . .+
Xk = b is defined as the value ofX1+X2+. . .+Xk−b. The
combination operation is the absolute value of the sum of er-
rors. The overall cost function is the addition of absolute val-
ues of the errors of all constraints The method will start by a
random assignment of allN2 numbers in{1, 2, . . . , N2} on

the cells of the NxN square and consider as possible moves
all swaps between two values.

The method can be best described by the following exam-
ple which depicts information computed on a 4x4 square:

Values and Projections
Constraint errors on variables

-8
11 7 8 15 7
16 2 4 12 0
10 6 5 3 -10
1 14 9 13 3
4 -5 -8 9 -3

8 2 1 8
4 8 16 9
6 23 21 1
1 2 5 9

Costs of next
configurations

39 54 51 33
53 67 61 41
45 57 57 66
77 43 48 41

The table on the left shows the configuration of the magic
square at some iteration (each variable corresponds to a cell
of the magic square). Numbers on the right of rows and
diagonals, and below lines, denote the errors of the corre-
sponding constraints. The total cost is then computed as the
sum of the absolutes values of those constraints errors and
is equal to 57. The table immediately on the right shows
the projection of constraint errors on each variable. The cell
(3,2) with value6 (in bold font on the left table) has maximal
error (23) and is thus selected for swapping. We should now
score all possible swaps with other numbers in the square;
this is depicted in the table on the right, containing the cost
value of the overall configuration for each swap. The cell
(1,4) with value15 (in italic) gives the best next configura-
tion (with cost33) and is thus selected to perform a move.
The cost of the next configuration will therefore be 33.

Table 4 (in the Appendix) details the performances of this
algorithm on bigger instances. For a problem of size NxN
the following settings are used: Tabu tenure is equal to N-
1 and 10 % of the variables are reset whenN2/6 variables
are Tabu. The programs were executed on a PentiumIII 733
MHz with 192 Mb of memory running Linux RedHat 7.0.

size Localizer Adaptive
6x6 3.00 0.02

10x10 22.20 0.13
16x16 28.80 1.14
20x20 108.00 3.41

Table 1: Comparison with Localizer

Constraint programming systems such as GNU-Prolog or
ILOG Solver perform poorly on this benchmark and can-
not solve instances greater than 10x10. We can nevertheless
compare with another local search method: this benchmark
has been attacked by the Localizer system with a Tabu-like
meta-heuristics. Localizer (13; 14) is a general framework
and language for expressing local search strategies which are
then compiled into C++ code. Table 1 compares the CPU

times for both systems (in seconds). Timings for Localizer
1 have been measured on a PentiumII-450 and thus normal-
ized by a factor 0.6 which corresponds to the SPECint 95 ra-
tio. Our results compare very favorably with those obtained
with the Localizer system, as the adaptive search is two or-
ders of magnitude faster. Moreover its performances could
certainly be improved by careful tuning of various parame-
ters (global cost function, Tabu tenure, reset level and per-
centage of reset variables, ...) in order to make the method
truly adaptive indeed...

God saves the queens
This puzzle consists in placing N queens on a NxN chess-
boards so that no two queens attach each other. It can be
modeled by N variables (that is, one for each queen) with
domains{1, 2, . . . , N} (that is, considering that each queen
should be placed on a different row) and3×N(N−1)/2 dis-
equation constraints stating that no pair of queens can ever
be on the same column, up-diagonal or down-diagonal :

∀(i, j) ∈ {1, 2, . . . , N}2, s.t. i 6= j :

Qi 6= Qj , Qi + i 6= Qj + j, Qi − i 6= Qj − j

Observe that this problem can also be encoded with three
all different global constraints.

We can define the error function for disequation as fol-
lows, in the most simple way : 0 if the constraint is satisfied
and 1 if the constraint is violated. The combination opera-
tion on variables is simply the addition, and the overall cost
function is the sum of the costs of all constraints.

size ILOG Ant-P Adaptive
50 0.09 0.39 0.00

100 0.07 2.58 0.00
150 79.3 20.6 0.00
200 36.6 40.37 0.01

Table 2: Comparison with ILOG Solver and Ant-P

Table 5 (in the Appendix) details the performances of this
algorithm on large instances. For a problem of size NxN the
following settings are used: Tabu tenure is equal to 2 and 10
% of the variables are reset whenN/5 variables are Tabu.
The programs were executed on a PentiumIII 733 MHz with
192 Mb of memory running Linux RedHat 7.0.

Surprisingly the behavior of the adaptive search is almost
linear and the the variance between different executions is
quasi inexistent. Let us now compare with a constraint pro-
gramming system (ILOG solver) and an ant colony opti-
mization method (Ant-P solver), both timings (in seconds)
are taken from (23) and divided by a factor 7 correspond-
ing to the SPECint 95 ratio between the processors. Table 2
clearly show that adaptive search is much more performant
on this benchmark, which might not be very representative
of real-life applications but is a not-to-be-missed CSP fa-
vorite...

1personal communication by Laurent Michel, one of the imple-
mentors of the Localizer system.

All-Intervals Series
Although looking like a pure combinatorial search problem,
this benchmark is in fact a well-known exercise in music
composition (24). The idea is to compose a sequence of N
notes such that all notes are different and tonal intervals be-
tween consecutive notes are also distinct. This problem can
be modeled as a permutation of the N first integers such that
the difference between two consecutive pairs of numbers are
all different.

This problem is modeled by consideringN variables
{V1, . . . , VN} that represent the notes, whose values will
represent a permutation of{0, . . . , N − 1}. There is only
one constraint to encode stating that absolute values between
each pair of consecutive variables are all different. Possible
moves from one configuration consist in all possible swaps
between the values of two variables. As all variables appear
symmetrically in this constraint there is no need to project
errors on each variable (all variable errors would be equal)
and we just have to compute the total cost for each config-
uration. One way to do this is to first compute the distance
between 2 consecutive variables:

Di = |Vi+1 − Vi| for i ∈ [1, n− 1]

Then one has to define the number of occurrence of each
distance value:

Occj = ΣN−1
i=1 (if Di = j then 1 else 0)

Obviously, the alldifferent constraint on the distance val-
ues is satisfied iff for allj ∈ [1, n − 1], Occj = 1. It is
thus interesting to focus on the valuesj such thatOccj = 0
representing the “missing values” for the distances. We will
moreover consider that it is harder to place bigger distances
and thus introduce a bias in the total cost as follows:

cost = Σn−1
j=1 (if Occj = 0 then j else 0)

Obviously a solution is found whencost = 0.
Table 6 (in the Appendix) details the performances of this

algorithm on several instances. For a problem of size N the
following settings are used: Tabu tenure is equal toN/10
and 10 % of the variables are reset when 1 variable is Tabu.
The programs were executed on a PentiumIII 733 MHz with
192 Mb of memory running Linux RedHat 7.0.

Let us now compare with a constraint programming sys-
tem (ILOG solver) and an ant colony optimization method
(Ant-P solver), both timings are taken from (23) and divided
by a factor 7 corresponding to the SPECint 95 ratio between
the processors. ILOG Solver might take advantage of global
constraints to model this problem, but nevertheless perform
poorly and can only find (without any backtracking) the triv-
ial solution :

< 0, N − 1, 1, N − 2, 2, N − 3, . . . >

For instances greater than 16, no other solution can be found
in reasonable time: (23) reported that the execution times
where greater than a full hour of CPU time (this is depicted
by a * symbol in our table).

Adaptive search is therefore more than an order of mag-
nitude faster than Ant-Colony Optimization on this problem
(see table 3, where timings are given in seconds).

size ILOG Ant-P Adaptive
14 4.18 0.07 0.00
16 126.05 0.28 0.01
18 * 0.52 0.04
20 * 1.48 0.06
22 * 2.94 0.16
24 * 9.28 0.70

Table 3: Comparison with ILOG Solver and Ant-P

Number Partitioning

This problem consists in finding a partition of numbers
{1, . . . , N} into two groups A and B such that:

• A and B have the same length

• sum of numbers in A = sum of numbers in B

• sum of squares of numbers in A = sum of squares of num-
bers in B

This problem admits a solution iff N is a multiple of 8
and is modeled as follows. Each configuration consists in
the partition of the valuesVi ∈ {1, . . . , N} in two subsets
of equal size. There are two constraints :

Σn
i=1Vi = N(N + 1)/2

Σn
i=1V

2
i = N(N + 1)(2N + 1)/6

The possible moves from one configuration consist in all
possible swaps exchanging one value in the first subset with
another one in the second subset. The errors on the equality
constraints are computed as previously in the magic square
problem. In this problem again, as in the previous all-
intervals example, all variables play the same role and there
is no need to project errors on variables. The total cost of
a configuration can be obtained as the sum of the absolute
values of all constraint errors. Obviously again, a solution is
found when the total cost is equal to zero.

Table 7 (in the Appendix) details the performances of this
algorithm on several instances. For a problem of size N the
following settings are used: Tabu tenure is equal to 2 and
2 % of the variables are reset when one variable is Tabu.
The programs were executed on a PentiumIII 733 MHz with
192 Mb of memory running Linux RedHat 7.0.

Constraint Programming systems such as GNU Prolog
cannot solve this problem for instances larger than 128.

Crypto-arithmetics : the Alpha cipher

The numbers{1, . . . , 26} have been randomly assigned to
the letters of the alphabet. The numbers beside each word
are the total of the values assigned to the letters in the word.
e.g for LYRE L,Y,R,E might equal 5,9,20 and 13 respec-
tively or any other combination that add up to 47. The prob-
lem consists in finding the value of each letter satisfying the
following equations:

BALLET = 45 GLEE = 66
CELLO = 43 JAZZ = 58

CONCERT = 74 LYRE = 47
FLUTE = 30 OBOE = 53
FUGUE = 50 OPERA = 65
POLKA = 59 SONG = 61

QUARTET = 50 SOPRANO = 82
SAXOPHONE = 134 THEME = 72

SCALE = 51 VIOLIN = 100
SOLO = 37 WALTZ = 34

This is obviously modeled by a set of 20 linear equations
on 26 variables. The errors on the linear constraints are com-
puted as previously in the magic square example. The pro-
jection on variables is the absolute value of the sum of each
constraint error multiplied by the coefficient of the variable
in that (linear) constraint. The total cost is, as usual, the sum
of the absolute values of constraint errors.

Local search is certainly not the best way to solve such a
(linear) problem. Nevertheless it could be interesting to see
the performances of adaptive search on such a benchmark in
order to observe the versatility of this method.

Table 8 (in the Appendix) details the performances of this
algorithm. The following settings are used: Tabu tenure is
equal to 1 and 5 % of the variables are reset when 6 variables
are Tabu. The programs were executed on a PentiumIII 733
MHz with 192 Mb of memory running Linux RedHat 7.0.

Constraint Programming systems such as GNU Prolog
can solve this problem in 0.25 seconds with standard label-
ing and in 0.01 seconds with the first-fail labeling heuristics.
Surprisingly, adaptive search is not so bad on this example,
which is clearly out of the scope of its main application do-
main.

Conclusion and Perspectives
We have presented a new heuristic method called adaptive
search for solving Constraint Satisfaction Problems by local
search. This method is generic, domain-independent, and
uses the structure of the problem in terms of constraints and
variables to guide the search. It can apply to a large class of
constraints (e.g. linear and non-linear arithmetic constraints,
symbolic constraints, etc) and naturally copes with over-
constrained problems. Preliminary results on some classical
CSP problems show very encouraging results, about one or
two orders of magnitude faster than competing methods on
large benchmarks. Nevertheless, further testing is obviously
needed to assess these results.

It is also worth noticing that the current method does not
perform any planning, as it only computes the move for the
next time step out of all possible current moves. It only per-
forms a move if it immediately improves the overall cost of
the configuration, or it performs a random move to escape
a local minimum. A simple extension would be to allow
some limited planning capability by considering not only
the immediate neighbors (i.e. nodes at distance 1) but all
configurations on paths up to some predefined distance (e.g.
all nodes within at distance less than or equal to somek),
and then choose to move to the neighbor in the direction
of the most promising node, in the spirit of variable-depth

search (11) or limited discrepancy search (9). We plan to
include such an extension in our model and evaluate its im-
pact. Future work will also focus on the stochastic aspects
and parameter tuning of the method, and we plan to develop
dynamic, self-tuning algorithms.

References
[1] E. Aarts and J. Lenstra (Eds).Local Search in Combi-

natorial Optimization. Wiley, 1997.

[2] A. Borning, B. Freeman-Benson and M. Wilson. Con-
straint Hierarchies.Lisp and Symbolic Computation,
vol. 5 no. 3, 1992, pp 223-270.

[3] P. Codognet and D. Diaz. Compiling Constraint in
clp(FD) . Journal of Logic Programming, Vol. 27,
No. 3, June 1996.

[4] A. Davenport, E. Tsang, Z. Kangmin and C. Wang.
GENET : a connectionist architecture for solving con-
straint satisfaction problems by iterative improvement.
In proc. AAAI 94, AAAI Press, 1994.

[5] D. Diaz and P. Codognet. The implementation of GNU
Prolog. Inproc. SAC’OO, 15th ACM Symposium on
Applied Computing. Como, Italy, ACM Press 2000.

[6] F. Glover and M. Laguna.Tabu Search, Kluwer Aca-
demic Publishers, 1997.

[7] P. Galinier and J-K. Hao. A General Approach for Con-
straint Solving by Local Search.draft, 2001.

[8] J-K. Hao, P. Galinier and M. Habib. Metaheuristiques
pour l’optimisation combinatoire et l’affectation sous
contraintes.Revue d’Intelligence Artificielle, vol.2 no.
13, 1999, pp 283-324.

[9] W. Harvey and M. Ginsberg. Limited Discrep-
ancy Search. Inproc. IJCAI’95, 14th International
Joint Conference on Artificial Intelligence, Montreal,
Canada, 1995.

[10] S. Lin. Computer solutions of the traveling sales-
man problem.Bell System Technical Journal, vol. 44
(1965), pp 2245-2269.

[11] S. Lin and B. Kerninghan. An effective heuristic algo-
rithm for the traveling-salesman problem.Operations
Research, vol. 21 (1973), pp 498-516.

[12] Z. Michalewicz and D. Fogel.How to solve it: Modern
Heuristics, Springer Verlag 2000.

[13] L. Michel and P. Van Hentenryck. Localizer : a mod-
eling language for local search. Inproc. CP’97, 3rd
International Conference on Principles and Practice
of Constraint Programming, Linz, Austria, Springer
Verlag 1997.

[14] L. Michel and P. Van Hentenryck. Localizer.Con-
straints, vol. 5 no. 1&2, 2000.

[15] S. Minton, M. Johnston, A. Philips and P. Laird. Min-
imizing conflicts : a heuristic repair method for con-
straint satisfaction and scheduling problems.Artificial
Intelligence, vol. 58, 1992, pp 161-205.

[16] K. Nonobe and T. Ibaraki. A tabu search approach to
the constraint satisfaction problem as a general prob-
lem solver. European Journal of Operational Re-
search, vol. 106, 1998, pp 599-623.

[17] G. Pesant and M. Gendreau. A Constraint Program-
ming Framework for Local Search Methods.Journal
of Heuristics, vol. 5 no. 3, 1999, pp 255-279.

[18] J-F. Puget. A C++ implementation of CLP. Inproc.
SPICIS’94, Singapore, 1994.

[19] V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, G.
D. Smith. Modern Heuristic Search Methods. Wiley,
1996.

[20] V. Saraswat, P. Van Hentenryck et al. Constraint Pro-
gramming, ACM Computing Surveys, vol. 28 no. 4,
December 1996.

[21] B. Selman, H. Levesque and D. Mitchell. A new
method for solving hard satisfiability problems. In
proc. AAAI’92, AAAI Press 1992.

[22] B. Selman, H. Kautz and B. Cohen. Noise strategies
for improving local search. Inproc. AAAI’94, AAAI
Press 1994.

[23] C. Solnon. Solving permutation problems by ant
colony optimization. Inproc. ECAI’2000, Berlin, Ger-
many, Wiley, 2000.

[24] C. Truchet, C. Agon and G. Assayag. Recherche Adap-
tative et Contraintes Musicales. Inproc. JFPLC2001,
Journes Francophones de Programmation Logique et
Programmation par Contraintes, P. Codognet (Ed.),
Hermes, 2001.

[25] J. P. Walser.Integer Optimization by Local Search : A
Domain-Independent Approach, LNAI 1637, Springer
Verlag 1999.

problem time (sec) time (sec) time (sec) nb nb local nb nb
instance avg of 10 best worst iterations minima swaps resets

10x10 0.13 0.03 0.21 6219 2354 3864 1218
20x20 3.41 0.10 7.35 47357 21160 26196 11328
30x30 18.09 0.67 52.51 116917 54919 61998 29601
40x40 58.07 10.13 166.74 216477 102642 113835 56032
50x50 203.42 44.51 648.25 487749 233040 254708 128625

Table 4: magic square results

problem time (sec) time (sec) time (sec) nb nb local nb nb
instance avg of 10 best worst iterations minima swaps resets

100 0.00 0.00 0.01 30 0 29 0
200 0.01 0.00 0.01 50 0 50 0
500 0.04 0.04 0.05 114 0 114 0

1000 0.14 0.13 0.15 211 0 211 0
2000 0.53 0.50 0.54 402 0 402 0
3000 1.16 1.13 1.19 592 0 592 0
4000 2.05 2.01 2.08 785 0 785 0
5000 3.24 3.19 3.28 968 0 968 0
7000 6.81 6.74 6.98 1356 0 1356 0

10000 13.96 13.81 14.38 1913 0 1913 0
20000 82.47 81.40 83.81 3796 0 3796 0
30000 220.08 218.18 221.14 5670 0 5670 0
40000 441.93 439.54 444.84 7571 0 7571 0

100000 3369.89 3356.75 3395.45 18846 0 18846 0

Table 5: N-Queens results

problem time (sec) time (sec) time (sec) nb nb local nb nb
instance avg of 10 best worst iterations minima swaps resets

10 0.00 0.00 0.00 14 6 8 3
12 0.00 0.00 0.01 46 20 25 20
14 0.00 0.00 0.01 85 38 46 38
16 0.01 0.00 0.02 191 88 103 88
18 0.04 0.01 0.08 684 316 367 316
20 0.06 0.00 0.17 721 318 403 320
22 0.16 0.04 0.36 1519 527 992 791
24 0.70 0.10 2.42 5278 1816 3461 2724
26 3.52 0.36 9.26 21530 7335 14194 11003
28 10.61 1.38 25.00 53065 18004 35061 27006
30 63.52 9.49 174.79 268041 89518 178523 134308

Table 6: All-intervals series result

problem time (sec) time (sec) time (sec) nb nb local nb nb
instance avg of 10 best worst iterations minima swaps resets

80 0.01 0.00 0.02 169 108 61 123
120 0.02 0.01 0.04 194 118 76 177
200 0.11 0.06 0.19 383 216 166 433
512 1.13 0.07 3.26 721 348 372 1918
600 1.86 0.02 8.72 870 414 456 2484
720 4.46 0.54 21.12 1464 680 784 5101
800 6.41 0.26 12.55 1717 798 919 6385

1000 8.01 2.44 17.25 1400 630 769 6306

Table 7: number partitioning results

problem time (sec) time (sec) time (sec) nb nb local nb nb
instance avg of 10 best worst iterations minima swaps resets
alpha-26 0.08 0.03 0.18 5419 3648 1770 751

Table 8: alpha cipher result

	Introduction
	Adaptive Search
	General Algorithm
	Examples
	Magic to the square
	God saves the queens
	All-Intervals Series
	Number Partitioning
	Crypto-arithmetics : the Alpha cipher

	Conclusion and Perspectives

